

YUMSUK JOURNAL OF PURE AND APPLIED SCIENCES

SERO-PREVALENCE OF *TOXOPLASMA GONDII* INFECTION AND ITS RISK FACTORS AMONG HIV-INFECTED PATIENTS ATTENDING GAYA AND WUDIL GENERAL HOSPITALS, KANO STATE, NIGERIA

¹Yahaya, A., ¹ Ali, Y., and ¹Ali, M. U ¹Department of Biology, Aliko Dangote University of Science and Technology, Wudil, Kano. P. M. B. 3244, Kano State.

* Corresponding Author e-mail: yahayabdul@yahoo.com

Abstract

The objectives of the research were to investigate the sero-prevalence, and its risk factors associated with infection among HIV-patients attending Gaya and Wudil General Hospitals, as well as to link the anti- T. gondii IgG/IgM titre with the CD4+ cell count and HIV-1 RNA viral load. The study was cross-sectional. in which a total of 180 people participated i.e. 110 HIV Positives patients (Cases) and (70) healthy HIV Negative were used as controls. Three mls of blood sample was obtained and serological test using ELISA Kits was performed to identify IgG and IgM antibodies against T. gondii, CD4+ cell count was measured by flow cytometry and Viral load calculated using PCR, respectively. Questionnaire was administrated to each consenting participant to identify the risk factors in connection to T. gondii infection. Data were analysed using Minitab R version 0.3.1 and association between the variable were examined by using chisquare (X²) test. The overall prevalence of Toxoplasmosis among HIV-Patients from Gaya and Wudil was 29.44% which demonstrated evidence of toxoplasmic infection. Gaya had the highest occurrence (31.11%) while Wudil had the least (27.78%). Age frequency distributions showed highest prevalence between 26-35 age group (40.0%) case and 36-45 (45.7%) control at Gaya, 26-35 (34.5%) case and (31.4%) control at Wudil respectively. Clinical symptoms/signs of Toxoplasmosis demonstrated significant difference with chronic headache. However, other signs and symptoms; were fairly distributed between both Gaya and Wudil. There was a statistically significant difference between anti-T. gondii IgG/IgM titre and the CD4+ among HIV positive participants, (P<0.05). Moreover, there was no significant difference between HIV-1 RNA viral load and the anti-T.gondii IgG/IgM titre (P>0.05). It is concluded that T. gondii infection was more frequent among HIV positive patients compared to controls. It has also identified Keeping cat, soil contact, and ingestion of unwashed vegetables as the commonest risk factors for the transmission of T. gondii. Therefore, regular screening for toxoplasmosis in HIV positive patients as well as health education on strategies to minimize T. gondii infection among HIV-Patient is urged among others in the study region. Keywords: CD4+ cell count, Gaya, HIV-Infected Patients, HIV-1 RNA, Toxoplasma gondii, Wudil.

INTRODUCTION

Toxoplasmosis is a widespread neglected tropical illness caused by an obligate intracellular and neurotropic apicomplexan protozoan parasite termed *Toxoplasma gondii*; infecting practically all warm-blooded vertebrates including humans

(Wang et al. 2017). Humans usually become infected by eating raw or undercooked meat harboring viable tissue cysts, ingesting contaminated water and food or soil with oocysts shed by cats to the environment and through congenital transmission from infected mother to the foetus during pregnancy (Abdelbaset et al. 2020). Transmission also occurs owing to the blood

transfusion or organ transplantation (Singh and Sehgal 2010).

Toxoplasma gondii infection has been revealed to be a prevalent opportunistic infection which can progress to a life-threatening condition, especially among people infected with Human Immunodeficiency Virus (HIV). Most T. gondii infections in people are asymptomatic, and they also can cause severe Toxoplasmic encephalitis (TE) by acute infection or reactivation of latent infections. Over the past two decades in underdeveloped nations, T. gondii steadily manifests as a life-threatening illness among AIDS patients (Machala etal. 2009). It is predicted that 25 to 30% of the world's population is infected with Toxoplasma (Pappas et al. 2009). In countries like as North America, Northern Europe and in Sahelian nations of Africa low sero-prevalences of 10% to 30% are seen. In nations of Central and Southern Europe, tropical African countries and Latin America the sero-prevalence is roughly 30 to 50% (Montoya Remington, 2014). The Prevalence population of 40.25 % reported among Nigerian pregnant women is higher than the range of 6.1-25.0% in countries like China, Mexico and Thailand. Toxoplasma gondii prevalence in HIVpatients in Nigeria was 31.68% corroborating with results of 36.3% and 38.0% from Thailand and South Africa (Karshima and Karshima 2020) respectively. An overall *Toxoplasma gondii* IgM antibody seroprevalence of 7.5% was observed in Kano State, similar to 8.8% obtained in Saudi Arabian Maternity Hospital, 7.6% reported from Lagos, Nigeria and 8.4% obtained in Libya and

differs from 4.6% and 0.8% from Zaria, Northern Nigeria (Ibrahim et The parasite can lead to life-threatening situations for HIV/AIDS sufferers, being an opportunistic parasite. Hence, the necessity to establish baseline data that would allow health organizations to make policies targeted towards the management of the disease. Moreover, there is scarcity of evidence on the Toxoplasmosis serologic status and risk factors of T. gondii infection among HIV-infected patients. Therefore, this study is aimed at assessing the seroprevalence of Toxoplasma gondii and any associated risk factors among HIV-infected Patients attending Gaya and Wudil General Hospitals, Kano State, Nigeria.

MATERIALS AND METHODS

Study Area

The investigation was conducted at Gaya and Wudil a Local Government Area in Kano State, Nigeria (Figure 1). Wudil is situated between latitude 11°49′ 33.73" N and longitude 8°51′ 39.19" E. and has an area of 362 km² with a population of 185,189 2006 (NPC, 2006); and the postal code of the area is 713101 (NIPOST, 2009) while Gaya LGA is situated between latitude 11°52′ 38.30″N and longitude 9°00′ 9.72″E. and has an area of 613 km² with a population of 201,016 (NCP 2006); the postal code of the area is 713102 (NIPOST 2009).Gaya and Wudil Hospitals are located at Kano South, Kano State, Nigeria. The principal occupation of the population of the studied areas is farming, Cattle rearing and fishing

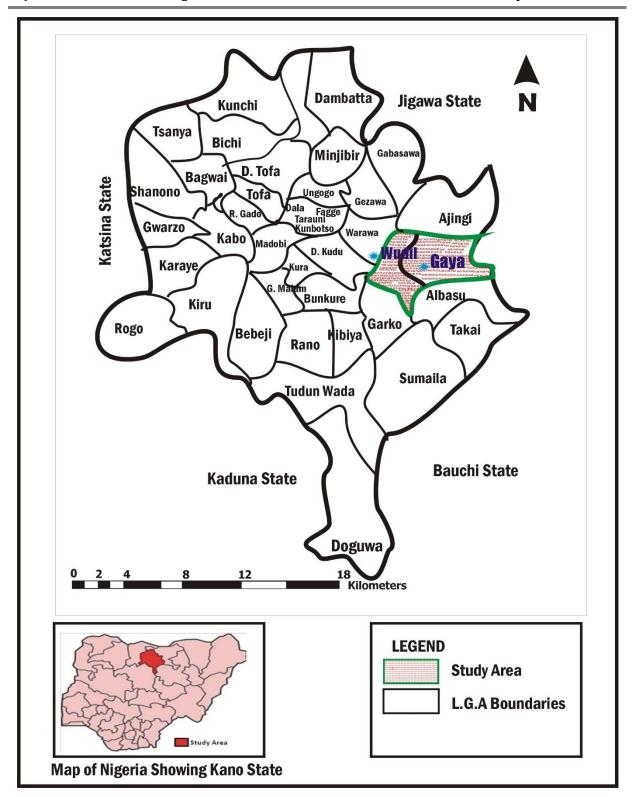


Figure 1. Map of Kano State Showing Study Areas. Source:(GIS Lab ADUSTECH, Wudil, 2021)

Ethical Consideration

Ethical clearance was obtained from the Kano State Hospitals Management Board, before Selection Criteria commencement of the work and the patients' Inclusion Criteria: Only HIV patient attending Gaya

consent sought.

and Wudil General Hospitals, Kano State, and HIV patient who gave written informed consent in their clinic and agreed to be included in the study.

Exclusion Criteria: HIV patient who did not offer an informed consent to be included in the study, and HIV patient who did not attend Gaya and Wudil General Hospital

Study Design, Sampling Technique and Sample Size

The study design was institutional based crosssectional study using systematic sampling technique. Sample size was decided based on statistical formula (Araoye 2004) with a previous prevalence of 7.5% from Kano state (Ibrahim et al.2017) and desired absolute precision of 5% with 95% C.I (Confidence Interval). Accordingly, a total of 180 subjects were recruited in the study. The study subjects were made up of 110 confirmed HIV Positive patients from Gaya and Wudil and General Hospitals, and (70) apparently healthy Age and Sex matched HIV Negative were used as controls.

Sample Collection

About 3mls of venous whole blood were drawn aseptically from each HIV patient into serum separator tubes. It was then centrifuged at 1000 rpm for 10 minutes and blood sera separated into labeled cryotubes and stored at -20°C until use. Questionnaire was administered to each consenting participant to assess the sociodemographic characteristics, variable risk factors to *Toxoplasma gondii* infection by the individual. CD4 Cell count of each individual was measured from blood sample of the subjects.

Determination of the *T. gondii* by IgG/IgM ELISA Kit

Quantitative determination of the levels *T. gondii* IgG and antibodies in patient's serum was determined by using commercial ELISA Kit (Teco Diagnostics Kit) according to manufacturer's procedure.

Determination of CD4 Cell count by Flow

Cytometry

Blood samples were analyzed for CD4 Tlymphocyte cell estimation using flow cytometry (Partec, GmbH, Germany). 20ml of CD4 PE antibody was placed into a Partec test tube and 20ml of well-mixed whole EDTA blood was added, mixed gently and incubated in the dark for 15 minutes at room temperature. The mixture was agitated during incubation every 5 minutes. Eight hundred micro liters of CD4 buffer was added to the mixture of antibody and sample and mixed gently. This was then plugged to the counter for counting as described by Akinbo *et al.* (2010).

Determination of Viral Load

The Viral load was determined by Abbott Realtime HIV-1m2000rt which is an automated machine. The AmpliScreen HIV-1 Test, version 1.5 (v1.5) is a qualitative *in vitro* test for the direct detection of Human Immunodeficiency Virus Type 1 (HIV-1) RNA in human plasma. HIV-1 RNA in plasma can be detected by nucleic acid amplification technologies, such as the Polymerase Chain Reaction (PCR), the AmpliScreen HIV-1 Test, v1.5 uses PCR technology to achieve maximum sensitivity for the detection of HIV-1 RNA in plasma samples (Mulder *et al.* 1994).

Statistical Analyses

The data analysis was performed by Chi-square test using the statistical software: Minitab R integration packages Version 0.3.1. Chi-Square (X²) was used to analyze the associations between sero-prevalence and influence of risk factors including Gender, Age, etc. The differences were considered statistically significant at P<0.05.

RESULTS AND DISCUSSION

The overall prevalence of Anti-Toxoplasma antibodies found by ELISA is presented in Table 1. Out of 110 HIV-Positive Patients sampled (Cases) and 70 HIV-Negative (Control) from Gaya and Wudil General Hospitals, 29.44% indicated symptoms of toxoplasmic infection. The maximum frequency of 31.11% was identified among patients from Gaya General Hospital whereas substantially lower prevalence (27.78%) of the infection was recorded among patients from Wudil General Hospital.

Table 1: Overall Prevalence of Toxoplasmosis among the Cases and Control Attending Gava and **Wudil General Hospitals**

Health Facility	No. Examined	No. of Case Positive	No. of Control Positive	Percentage of Positive (%)	X^2	P Value
Gaya G. H.	90	22	6	31.11%	0.783	0.376
Wudil G. H.	90	16	9	27.78%		
Total	180	38	15	29.44%		

Key: G. H. = General Hospital

Study Population

The distribution of cases and controls of Age frequency is provided in Table 2. The subjects attending Gaya and Wudil General Hospitals, in both age frequency were highest among age group between 26-35 years (40.0%) for cases and (42.8%) for control at Gaya General Hospital and

Socio-Demographic Characteristics of the 34.5% for cases; but between the ages of 15-25 it was 31.4% for control at Wudil General Hospital, while age group between 56 to above years had the least prevalence of the infection for cases (9.1% and 5.5%) and controls (8.6% and 8.6%) at both Gava and Wudil General Hospitals, respectively.

Table 2: Age Frequency Distribution of Cases and Controls Attending Gaya and Wudil General **Hospitals**

	Gaya		Wudil						
Age Group (Years)	Case (%)	Control (%)	Case (%)	Control (%)	X^2	P- Value			
15-25	8 (14.5)	7 (20.0)	14 (25.5)	11 (31.4)	10.712	0.554			
26-35	22 (40.0)	15 (42.8)	19 (34.5)	10 (28.6)					
36-45	11 (20.0)	16 (45.7)	12 (21.8)	9 (25.7)					
46-55	9 (16.4)	4 (11.4)	7 (12.7)	2 (5.7)					
56 to Above	5 (9.1)	3 (8.6)	3 (5.5)	3 (8.6)					
Gender									
Male	21 (38.2)	12 (34.3)	25 (45.5)	16 (45.7)	1.603	0.659			
Female	34 (61.8)	23 (65.7)	30 (54.5)	19 (54.3)					
Educational 1	Educational Level								
Islamic	19 (34.6)	5 (14.3)	18 (32.7)	14 (40.0)	14.291	0.112			
Primary	8 (14.5)	7 (20.0)	9 (16.4)	10 (28.6)					
Secondary	15 (27.3)	10 (28.6)	18 (32.7)	4 (11.4)					
Tertiary	13 (23.6)	13 (37.1)	10 (18.1)	7 (20.0)					

highest prevalence of taxoplasmosis occurred both Gaya and Wudil General Hospitals. among Female (61.8%) for cases at Gaya while it was 54.5% cases at Wudil General Hospital. Male had comparatively the least prevalence

The results from Table 2 also indicated that the cases (38.2%, 45.5%) and controls (34.3%, 45.7%) at

Table 3: Distribution of Risk Factors for the Transmission of T. gondii among Cases and Controls Attending Gava and Wudil General Hospitals

Attending Gaya and Wudil General Hospitals Gaya Wudil									
Risk Factor	Case (%)	Control (%)	Case (%)	Control (%)	X^2	P- Value			
Eating unwashed Vegetable	47 (85.4)	23 (85.4)	39 (71.0)	28 (80.0)	1.169	0.279			
Eating Uncooked Meat	29 (52.7)	15 (42.8)	15 (27.3)	9 (25.7)	0.079	0.001			
Soil contact	38 (69.1)	26 (74.2)	42 (76.4)	20 (57.1)	0.951	0.329			
Blood Transf.	15 (27.3)	6 (17.1)	11 (20.0)	10 (28.6)	1.615	0.204			
Keeping Cat	18 (32.7)	9 (25.7)	15 (27.3)	10 (28.6)	0.249	0.002			
Handling cat liter	15 (27.3)	5 (14.3)	10 (18.2)	7 (20.0)	1.097	0.295			
Clinical Sympton	Clinical Symptoms								
Headache	17 (77.3)	11 (34.4)	10 (62.5)	8 (20.5)	0.120	0.022			
Fainted	7 (31.8)	0 (0.0)	2 (12.5)	1 (2.5)	0.637	0.425			
Fever	12 (54.5)	21 (63.6)	6 (37.5)	29 (74.4)	3.334	0.073			
Weakness of limb	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)					
Weakness of mouth-side	0 (0.0)	0 (0.0)	2 (12.5)	0 (0.0)		1.000			
Difficulty in swallowing	0 (0.0)	8 (24.2)	4 (25.0)	0 (0.0)		1.000			
Difficulty in walking	4 (18.1)	0 (0.0)	0 (0.0)	1 (2.5)		0.000			
Difficulty in speech	8 (36.4)	6 (18.1)	12 (75.0)	5 (12.8)	0.606	0.436			
Cough	8 (45.5)	15 (45.4)	12 (75.0)	12 (30.7)	1.113	0.292			
Difficulty in breathing	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)					

prevalence of the infection was highest (34.6%) among subjects that attended Islamic school for

Moreover, the result in table 2 showed that the primary school 14.5% for cases and 14.3% (control) for those that attended Islamic school at Gaya General Hospital. At Wudil General Hospital, the highest cases and 31.7% among those that attended (32.7%) prevalence was among subjects that attended tertiary school for control while the least Islamic and secondary schools for cases, and 40.0% prevalence was among subjects that attended (control) while the least (16.4%) prevalence was among subjects that attended primary school and 11.4% (control) among those that attended secondary school.

Epidemiology and Clinical Characteristics

The distributions of risk factors for the *T. gondii* infection were shown in Table 3. The result indicated that eating unwashed vegetables recorded 85.4% cases and 85.4% in controls from Gaya while 71.0% cases and 80.0% control from Wudil, $(X^2 = 1.169 P = 0.279)$, soil contact had 69.1% cases vs 74.2% controls from Gaya and 76.4% cases vs 57.1% control from Wudil ($X^2 =$ 0.951 P = 0.329), blood transfusion had 27.3% cases vs 17.1% controls from Gaya and 20.0% cases vs 28.6% control from Wudil ($X^2 = 1.615$ P = 0.204). Keeping Cat had 32.7% cases vs 17.1% control from Gaya and 27.3% cases vs 28.6% control from Wudil ($X^2 = 0.249$, P = 0.002). Eating undercooked meat had 52.7% cases vs 42.8% controls from Gaya General Hospital and 27.3% cases vs 25.7% control from Wudil ($X^2 = 0.079$, P = 0.001). The results suggest no significant difference amongst eating veggies, soil contact. unwashed blood transfusing, and handling cat liter but the result among eating undercooked meat and keeping cat reveals significant difference (P<0.05). Amongst the signs and symptoms two were found to be significantly commoner amongst anti-T. gondii positive subjects than their negative counterparts; Persistent headache had 77.3% anti-T. gondii positive vs 34.4% negative from Gaya General Hospital and 62.5% positive vs 20.5% negative from Wudil General Hospital $(X^2 = 0.120; P = 0.022)$. Fainting had 31.8% anti-T. gondii positive vs 0.0% negative from Gaya General Hospital and 12.5% positive vs 2.5% negative Wudil General Hospital ($X^2 = 0.637$; P = 0.425). However, additional signs and symptoms such as weakness of leg, weakness of mouth-side, difficulties in swallowing, difficulty in walking and difficulty in breath were reasonably distributed throughout both Gaya and Wudil General Hospitals, respectively.

Laboratory Characteristics

Table 4 indicated the distribution of CD4+ cell counts between HIV-infected anti-T. gondii

positive participants and their anti-T. gondii negative counterparts. The CD4+ cell counts ≥ 500 cells/µl; 9.1% positive vs 42.4% negative from Gaya and 31.2% positive vs 33.3% negative from Wudil, 200-499 cells/µl; 31.8% positive vs 33.3% negative from Gaya and 18.8% positive vs 41.1% negative from Wudil, below 200 cells/µl; 59.1% positive vs 24.3% nagetive from Gaya and 50.0% positive vs 25.6% negative from Wudil, respectively. The results revealed that there was considerable statistical variation in the prevalence across the four categories of Cd4+ Cell Count (χ^2 = 13.239, p = 0.039). The distribution of HIV-1 RNA viral load and anti-T. gondii sero-status amongst HIV-infected subjects showed HIV-1 RNA viral load ≥30,000 copies/ml i.e. 50.0% positive vs 27.3% negative from Gaya and 25.0% positive vs 17.9% negative from Wudil General Hospital, 5,000-30,000 copies/ml with 31.8% positive vs 33.3% negative from Gaya and 43.8% positive vs 30.8% negative from Wudil and <5000 copies/ml with 18.2% positive vs 39.4% negative from Gaya and 31.2 % positive vs 51.3% negative from Wudil, respectively. There was statistically significant correlation between the CD4+ cell count and the HIV-1 RNA viral load of HIV-positive patients in the research group. Moreover, the data indicated inverse connection between CD4+ cell count and viral burden.

Table 4: Distribution of Cd4+ Cell Count and Anti-T. gondii Status of the Study Population Attending Gaya and Wudil General Hospitals

Anti- T. gondii Status							
	Gaya		Wudil				
CD4 Cell	Positive (%)	Negative (%)	Positive (%)	Negative (%)	X^2	P- Value	
≥ 500	2 (9.1%)	14(42.4%)	5(31.2%)	13(33.3%)	13.239	0.039	
200-499	7(31.8%)	11(33.3%)	3(18.8%)	16(41.1%)			
0-199	13(59.1%)	8(24.3%)	8(50.0%)	10(25.6%)			
Total	22(100%)	33(100%)	16(100%)	39(100%)			
Viral Load							
> 30,000	11 (50.0%)	9 (27.3%)	4 (25.0%)	7 (17.9%)	5.898	0.435	
5000-30000	7 (31.8%)	11(33.3%)	7 (43.8%)	12 (30.8%)			
< 5000	4 (18.2%)	13 (39.4%)	5 (31.2%)	10 (51.3%)			
Total	22 (100%)	33 (100%)	16 (100%)	39 (100%)			

The (29.44%)overall prevalence of toxoplasmosis among HIV-Patients from Gaya and Wudil General Hospitals indicated signs of toxoplasmic infection. T. gondii seroprevalence and can be classified as relatively low in the study area when compared to previously reported figures in certain studies done in the region such as 41.67% in Kwara, 35.62% in Kaduna, 34.05% in Lagos and 41.13% in Rivers (Karshima and Karshima 2020). This finding is similar to those of other studies of sero-prevalence rate, 20%, 22.2%, and 27% which were reported in Eastern Nigeria, Abuja, Nigeria, and Sudan correspondingly (Uttah et al. 2013, Ogoina et al. 2013, 2018, Mustafa et al. 2019). Seropositivity of 27% was also found for T. gondii in healthy immunocompetent people in Mali, Africa (Uneke et al., 2005). However, the seroprevalence of toxoplasmosis in HIV positive people exhibited a small fluctuation in certain other studies. including 40.8% in Western Iran (Nazari et al., 2018), 36.3% in Mazandaran, North of Iran (Rahimi et al., 2015). Much lower T. gondii seroprevaleces of 10.8% were reported in Benue (Amuta et al., 2012) and 7.53% in Edo (Ogefere et al., 2019) while some studies reported a higher sero-prevalence of 44.9%, 49.1%, 60.7%, and 80.8% (Ouologuem *et al.*, 2013, Nissapatorn *et al.*, 2002, Sukthana, 2006, Daryani *et al.*, 2014). These variations in the seroprevalence rate may be attributed to disparity in the sample size, study techniques applied, changes in their way of life, geographical area, climatic conditions as well as prevailing socio- demographic factors pushing the spread of the parasite in the two localities. A study conducted in Northwest Ethiopia (Muluye *et al.* 2013), with lower sample size of study participants, showed much higher (76.5%) prevalence compared to the current study.

In the present study the highest sero-prevalence of taxoplasmosis recorded in the age group between 26-35 years among the patient for both cases and control at Gaya and Wudil General Hospitals, respectively; clearly indicated that there is variation in the prevalence of *T. gondii* with age of HIV tested individuals as affirmed by many authors and this result is in close conformity with the report of Walle *et al.* (2013) who reported the highest prevalence rate in the 21-30-year age group as well as that of Onosakponome *et al.* (2020) who reported highest sero-prevalence of *T.*

gondii among age groups 25-29 years, whereas Zhang et al. (2015) showed that the highest prevalence of the disease was in 3rd and 4th decades of life. However, in contrast to our data, Nazari et al. (2018), in a comparable study revealed that sero-prevalence was the greatest in the 46 - 60 year age group. Nevertheless, these anomalies can probably be elucidated by the protracted exposure time as the patient continues to age. Although there were no significant correlations between age groups and the seroprevalence of Toxoplasma spp., it was observed that the seroprevalence of Toxoplasma spp. infection increases with age ascribed to the waning immunity and gradual inception of aging (Uneke et al. 2005, Uttah et al. 2013). Moreover, age group is recognized as a potential determinant prevalence of the (Teweldemedhin et al. 2019). This might be explained by the assenting interplay between a rise in age and a prolonged risk of exposure to Toxoplasma gondii oocysts and viable tissue cysts (bradyzoites) from the flesh of infected animals throughout time (Bigna et al. 2020). Furthermore, this can be attributed to the rising tendency of the people to eat raw or undercooked meats, fast foods (burgers and sausages), and/or increased close contact with pet cats as their age (Rouatbi 2019). increases et al.It is found from the present study that females HIV patients had the greatest sero-prevalence of taxoplasmosis than their male counterpart in cases and control at both institutions. This conclusion is in agreement with (Hassan et al. 2017, Karshima and Karshima 2020 and Onosakponome et al., 2020). Similarly, the seroprevalence percentages were close to those found in related studies in Abuja (Uttah et al. 2013, Malaysia (Nazari et al. 2018), Western Iran (Nazari et al. 2018), and Northern Mexico (Daryani et al. 2014), demonstrating that T. gondii seroprevalence was not sex-related. However, in contrast to this, Walle et al. (2013) showed a considerably greater prevalence rate of

variations in socializing behavior or environmental exposure of males compared to females.

In this study it was observed that majority of Islamic subjects were identified amongst the cases, while on the other hand most of the control subjects had tertiary level of education. This finding may reflect lack of education or ignorance as one of the variables responsible for the acquisition of both HIV and T. gondii infection amongst the study population. The results demonstrate similarity with those of Olusi et al. (2018) and Mustafa et al. (2019) who reported lack of knowledge about toxoplasmosis among pregnant women in Osogbo, Sothwestern, Nigeria among apparently immunocompetent and Sudanese women, respectively.

The distribution of occupation was highest among House women 32.7% (Cases) versus Students 34.3% (Control) from General Hospital Gaya and Housewives 25.5% (Cases) versus Civil servant with 28.6% (Control) from Wudil General Hospital, respectively. There was no meaningful statistical difference in the prevalence across the different types of occupation. The results demonstrate consistency with findings of (Hassan and Olusi et al. 2017 According to this study, eating uncooked vegetables, consuming undercooked meat and contact with soil were factors that strongly influenced the spread of toxoplasmosis. This finding supported the observations in earlier investigations (Uttah et al. 2013, Nazari et al. 2018). Although not significant, it has also been shown that blood transfusion, and handling cat liter considerably adds to toxoplasmosis as similarly described by Wang et al. (2017) and Nguemaïm et al. (2020). The Cats play a crucial role in the epidemiology of T. gondii and are substantial producers of viable oocysts for environmental contamination (Jiang et al. 2018). They can acquire the illness by the ingestion of raw meat with tissue cysts (bradyzoites) from infected animals (Foroutan et al. 2016).

toxoplasma infection in males than females in a Amongst these signs and symptoms two were shown multivariate model and may be attributable to to be considerably amongst anti-T. gondii positive

people than their negative counterparts; persistent headache, fainted, difficulty in speech, and cough, from Gaya and Wudil General Hospitals, respectively. However, additional indications and symptoms; weakness of Limb, weakness of mouth-side, difficulty in swallowing, difficulty in walking and difficulty in breath were fairly distributed throughout both Gaya and Wudil General Hospitals.

The distribution of CD4+ cell counts amongst HIVinfected anti-T. gondii positive participants with cells/μL showing they were more immonucompromised than T. gondii negative. The results suggested there was major statistical difference in the prevalence across the different groups of CD4+ cell count. This finding demonstrated consistency with the findings of (Oluwatoyin et al. 2015 and Hassan et al. 2017). This is not surprising given past investigations by Wong and co-workers have demonstrated that various opportunistic infections in the setting of HIV/AIDS (particularly parasitic) can induce drop in CD4+ cell counts without necessarily producing an increase in viral replication rate (Zanger et al., 2011). Reactivation of latent toxoplasmosis has been identified as the most prevalent form of the infection in HIV/AIDS patients and is related with toxoplasma encephalopathy notably in individuals with CD4 count< 200 cells/µL (Mukherjee and Kumar 2017). Moreover, CD4+ T cells played a vital part in fortification against intracellular protozoan parasites such as T. gondii since the cells produce critical effector cells that help control the parasite recrudescence during HIV infection (Zhou et al. 2011, Kodym et al. 2015).

There is a higher toxoplasma seroprevalence in both HIV infected and non-infected persons that is statistically substantially different between the two categories. Studies from Mozambique (Sitoe *et al.* 2010) found similar higher toxoplasmosis occurrence in the HIV-positive groups as compared to HIV-negative groups that according to the author could be ascribed to an increase in risky behavior in toxoplasma infected individuals that leads to increased exposure to HIV infection. Such a change in behavior could be related to

parasite-driven personality alterations. observed in toxoplasma-infected persons by others (Fleger et al. 1996). According to Walle et al. (2013) toxoplasma infection is a marker of exposure to dangerous social connections or habits, which correlates with early HIV infection. The distribution of HIV-1 RNA viral load and anti-T. gondii sero-status amongst HIV-infected subjects is rather clear as anti-T. gondii positive people represented a considerable majority amongst subjects. A similar observation was made by (Azovtseva et al. 2020 and Made et al. 2021). The observed disparities in prevalence of anti- T. gondii antibodies could be attributable to differences in geographical distribution and/ or probable risk factors and socioeconomic conditions (Alvarado-Esquivel et al. 2012) contributing to contracting the infection.

CONCLUSION

The study has demonstrated that *T. gondii* infection is more prevalent among HIV positive persons compared to controls. Gaya General Hospital has the maximum frequency while the Wudil General Hospital has least prevalence. It has been found that keeping cat, soil contact, intake of unwashed vegetables, and undercooked meat were the commonest risk factors for the transmission of *T. gondii*. Fever, Persistent headache and problems in speech were identified to be the commonest signs of toxoplasmic infection among anti-*T. gondii* positive HIV-infected people.

There was an inverse correlation between the anti-T. gondii IgG titre and the CD4+ cell count of HIV-infected patients as the CD4 cell count decreases, the viral load increases. Moreover, anti-T. gondii positive patients have been demonstrated to have a dramatically lower mean CD4+ cell count, and a relatively higher mean HIV-1 RNA virus load compared to their negative counterparts. Measures should also be taken to prevent stray cats from entering homes. More research is needed in Kano State to adequately identify the epidemiology of Toxoplasmosis.

ACKNOWLEDGEMENTS

The authors would like to thank the ethics committee of Kano State Hospitals Management Board, Ministry of Health, Kano for providing us permission to carry out this study. We appreciate the support and cooperation of laboratory personnel of Gaya and Wudil General Hospitals throughout data collecting. Our special appreciation and respect go to all the study participants who gladly participated in this study for their interest and cooperation.

RERERENCES

- Abdelbaset, A.E., Hamed M.I., Abushahba, M.F.N., Rawy, M.S., Sayed, A.S. M. and Adamovicz, J.J. (2020). *Toxoplasma gondii* seropositivity and the associated risk factors in sheep and pregnant women in El-Minya Governorate, Egypt. *Vetenary World* 13(1):54–60.
- Akinbo, F. O., Okaka, C. E., Machado, R. L. D., Omoregie, R. and Onunu, A. N. (2010). Cryptosporidiosis among HIV-infected patients with diarrhea in Edo State, Midwestern Nigeria. *Malaysian J. Microbiol*. 6: 99101.
- Alvarado-Esquivel, C., Torres-Castorena, A., Liesenfeld, O., Estrada-Martínez, S. and Urbina-álvarez, J. D. (2012). High seroprevalence of *Toxoplasma gondii* infection in a subset of Mexican patients with work accidents and low socioeconomic status. *Parasit Vectors*, 5:13.
- Amuta, E.U., Amali, O., Jacob, S. E. and Houmsou, R.S. (2012). *Toxoplasma gondii* IgG antibodies in HIV/AIDS patients attending hospitals in Makurdi metropolis, Benue State, Nigeria. *International Journal Medical Biomedicine Research*. 1(3):186–96.
 - Araoye, M. O. (2004). Sample size determination. In: Araoye, M.O.; Research Methodology with Statistics for Health and Social Workers (eds). *Nathadex Pulishers*; Ilorin.
 - Azovtseva, O. V., Viktorova, E. A., Bakulina, E. G., Shelomov, A. S. and Trofimova, T. N.

- (2020). Cerebral toxoplasmosis in HIV-infected patients over 2015–2018 (a case study of Russia). *Epidemiology and Infection*. 148, e142, 1–6.
- Bigna, J. J., Tochie, J. N., Tounouga, D. N., Bekolo, A. O., Ymele, N. S. and Youda, E. L. (2020). Global, regional, and country seroprevalence of *Toxoplasma gondii* in pregnant women: a systematic review, modelling, and metaanalysis. *Sci. Rep.* 10(1):12102.
- Daryani, A., Sarvi, S., Aarabi, M., Mizani, A., Ahmadpour, E., Shokri, A., *et al.* (2014). Seroprevalence of *Toxoplasma gondii* in the Iranian general population: a systematic reviewandmeta-analysis. *Acta Trop.*137:185–94.
- Fleger, J., Kova, S., Kodym, P. and Frgnta, O. (1996). Induction of changes in human behaviour by the parasitic protozoan *Toxoplasma gondii*. *Parasitol*. 113:49–54
- Foroutan-Rad, M., Khademvatan, S., Majidiani, H., Aryamand, S., Rahim, F. and Malehi, A. (2016). Seroprevalence of *Toxoplasma gondii* in the Iranian pregnant women: A systematic review and meta-analysis. *Acta Trop.* 158: 160–169
- Hassan, R., Fateme, S., Enayatollah, S., Seyed, D. M. and Abbas, A. V. (2017) Seroprevalence of *Toxoplasma gondii* among HIV Patients in Jahrom, Southern Iran. *Korean Journal Parasitology*.Vol. *55*, *No.* 1: 99-103.
- Ibrahim, A., Kumurya, A. S., Yahaya, H., Abdu, A., Ado, B. K., Ella, E. E., Suleiman, A. B., Sulaiman, M. A., Aminu, M. A. and Koki, A. Y. (2017). T-Cell Mediated Immune Responses in Obstetric Population Acutely Infected with Toxoplasmosis in Kano, Nigeria. *UMYU Journal of Microbiology Research* Volume 2 Number 1 June. 217-227.
- Jiang, R.L., Ma, L.H., Ma, Z.R., Hou, G., Zhao, Q. and Wu, X. (2018). Seroprevalence and associated risk factors of *Toxoplasma gondii* among Manchu pregnant women in northeastern China. *Microb. Pathog.* 123:

398-401.

- Karshima, S. N and Karshima, M. N. (2020). Human *Toxoplasma gondii* infection in Nigeria: a systematic review and meta-analysis of data published between 1960 and 2019. *BMC Public Health*. 20: 877. Page1-15.
- Kodym, P., Maly, M., Beran, O., Jilich, D., Rozsypal, H., Machala, L., et al. (2015). Incidence, immunological and clinical characteristics of reactivation of latent *Toxoplasma gondii* infection in HIV-infected patients. *Epidemiol. Infect*. 143(3):600-607.
- Machala, L., Malý, M., Hrdá, S., Rozsypal, H., Stanková, M. and Kodym, P. (2009). Antibody response of HIV-infected patients to latent, cerebral and recently acquired toxoplasmosis. *European Journal of Clinical Microbiology and Infectious Diseases*. 28:179–182.
- Made Dwinata, Putu Eka Widyadharma, Putri Rossyana Dewi, and Eric Hartono Tedyanto (2021). Risk factors of cerebral toxoplasmosis in HIV patients: A systematic review. *Romanian Journal of Neurology*. 20 (3): 305-310.
- Mulder, J., McKinney, N., Christopherson, C. et. al. (1994). Rapid and simple PCR assay for quantitation of human immunodeficiency virus type 1 RNA in plasma: application to acute retroviral infection. J. Clin. Microbiol. 170: 1172-1179.
- Muluye, D., Wondimeneh, Y., Belyhun, Y., Moges, F., Endris, M., et al. (2013). Prevalence of *Toxoplasma gondii* and Associated Risk Factors among People Living with HIV at Gondar University Hospital, Northwest Ethiopia. *ISRN Tropical Medicine*, Volume 2013:

http://dx.doi.org/10.1155/2013/123858

- Montoya, J.G., and Remington, J.S. (2014).

 Management of *Toxoplasma gondii*infection during pregnancy. *Clinical Infection Disease*. 47: 554-566.
- Mukherjee, R. and Kumar, D. (2017).
 Toxoplasmosis in Human
 Immunodeficiency Virus/Acquired

- Immunodeficiency Syndrome Patients in a Tertiary Care Hospital of Pune City of Maharashtra, India. *International Journal of Med. Sci. Pub. Health.* 6(6): 1024 1027.
- Mustafa, M., Fathy, F., Mirghani, A., Mohamed, M. A., Muneer, M. S., Ahmed, A. E, *et al.* 2019). Prevalence and risk factors profile of seropositive *Toxoplasmosis gondii* infection among apparently immunocompetent Sudanese women. *BMC Res. Notes.* 12(1):279.
- Nazari, N., Bozorgomid, A., Janbakhsh, A. and Bashiri, F. (2018). *Toxoplasma gondii* and human immunodeficiency virus co-infection in western Iran: A cross sectional study. *Asian Pacific J. Trop. Med*.11(1):58.
- Nguemaïm, N. F., Takang, W. A., Dobgima, W. P., Guebidiang, B. M., Foumane, P. and Kamga, F. H. L. (2020). Seroprevalence of *Toxoplasma gondii* infection and associated risk factors among pregnant women attending antenatal clinic at the Bamenda Regional Hospital, Cameroon. *African Journal of Clinical and Experimental Microbiology*. 21 (2): 123 131.
- National Population Commission (2006). Census figures of 2006 in Nigeria. *National Population Commission (NPC)*, Nigeria.
- Nissapatorn, V., Kamarulzaman, A., Init, I., Tan, L. H., Rohela, M., Norliza, A., *et al.* Seroepidemiology of toxoplasmosis among HIV-infected patients and healthy blood donors. *Med. J. Malaysia*.57(3):304–10.
- NIPOST (2009). Nigeria Postal Agency: Post offices with Maps of Local Government Areas. https://en.wikipedia.org/wiki/Kano-State.
- Ogefere, H. O., Ali, A. S. and Omoregie, R. (2019). Effect of CD4 Count on the Prevalence of IgG and IgM Anti-Toxoplasma Antibodies Among HIV Positive Patients in Benin City, Edo State, Nigeria. *Journal of Medical Lab Science*. 29 (3): 54-60.
- Human Ogoina, D., Onyemelukwe, G. C., Musa, B. O. and cquired Obiako, R. O. (2013). Seroprevalence of IgM

- and IgG antibodies to Toxoplasma infection in healthy and HIVpositive adults from Northern Nigeria. J. Infect. Dev. Ctries. 7(5):398–403.
- Olusi, T. A., Salawu, S. A. and Oniya, M. O. (2018). Seroepidemiology of Toxoplasmosis among Pregnant Women in Osogbo, Southwestern, Nigeria. Journal of Infectious Diseases and Immunity. Vol. 10(2) pp. 8-16,
- Oluwatoyin, F., Audrey, L. F., Eric, C. S., Phyllis, C. T., Heather, D. W., Howard, M., Eva P., Andrea, K., Kathryn, A. and Mardge, H. C. (2015). Prevalence and Predictors of Toxoplasma Seropositivity in Women with and at Risk for Human Immunodeficiency Virus Infection. http://cid.oxfordjournals.org/ at Southern Illinois University.
- Onosakponome, E. O., Abah, A. E. and Wogu, M. (2020). Toxoplasmosis Among HIV Patients and Healthy Volunteers in Port Harcourt, State, Nigeria. Int. J. Infect. Rivers 7(2):e102929.
- Ouologuem, D. T., Djimde, A. A., Diallo, N., Doumbo, O. K. and Roos, D. S. (2013). Toxoplasmagondii seroprevalence in Mali. J. Parasitol. **99**(2):371–374.
- Pappas, G., Roussos. N., and Falagas, M.E. (2009). Toxoplasmosis snapshots: global status of gondii Toxoplasma seroprevalence implications for pregnancy and congenital toxoplasmosis. *International Journal* Parasitology. 39: 1385-1394.
- Rahimi, M. T. Mahdavi, S. A., Javadian, B., Rezaei, R., Moosazadeh, M. and Khademlou, M., et al. (2015). High Seroprevalence of Toxoplasma gondii Antibody in HIV/AIDS Individuals from North of Iran. Iran J. Parasitol.10(4):584-589.
 - Rouatbi, M., Amairia, S., Amdouni, Y., Boussaadoun, M. A., Ayadi, O., Al-Hosary, A. A. T et al. (2019). Toxoplasma gondii infection and toxoplasmosis in North Africa: A review. Parasite. 26:6.
 - Singh, G. and Sehgal, R. (2010). Transfusion- Zhou, P., Chen, Z., Li, H. L, Zheng, H., He, S., Lin, transmitted parasitic infections. Asian Journal of Transfusing Science. 4: 73-77.
 - Sitoe, S. P., Rafael, B., Meireles, L. R., Andrade,

- H. F. and Thompson, R. (2010). Preliminary report of HIV and Toxoplasma gondii occurrence in pregnant women from Mozambique. Rev Inst. Med. Trop. Sao Paulo.52(6):291-2295.
- Sukthana Y. (2006). Toxoplasmosis: beyond animals humans. **Trends** to Parasitol.22(3):137-42.
- Teweldemedhin. M., Gebremichael. A., Geberkirstos, G., Hadush, H., Gebrewahid, T. and Asgedom, S. W., et al. (2019). Seroprevalence and risk factors of Toxoplasma gondii among pregnant women in Adwa district, northern Ethiopia. BMC Infect. Dis. 19:327.
- Uneke, C. J., Duhlinska, D. D., Njoku, M. O. and Ngwu, B. A. (2005). Seroprevalence of acquired toxoplasmosis in HIV-infected and apparently healthy individuals in Jos, Nigeria. Parassitologia. 47(2):233–236.
- Uttah, E. C., Ajang, R., Ogbeche, J., Etta, H. and Comparative Etim, L. (2013).seroprevalence and risk factors of toxoplasmosis among three subgroups in Nigeria. J. Nat. Sci. Res. 3:23-28.
- Walle, F., Kebede, N., Tsegaye, A. and Kassa, T. (2013). Seroprevalence and risk factors for toxoplasmosis in HIV infected and noninfected individuals in Bahir Dar, Northwest Ethiopia. Parasit. Vectors. 6(1):15.
- Wang, Z., Wang, S., Liu, H., Ma, H., Li, Z., and Wei, F., et al. (2017). Prevalence and burden of Toxoplasma gondii infection in HIVinfected people: a systematic review and meta-analysis. Lancet HIV.4(4): e177-e188.
- Zhang, Y. B., Cong, W., Li, Z. T., Bi, X. G., Xian Y. Wang, Y. H., et al. (2015).Seroprevalence of Toxoplasma gondii Infection in Patients of Intensive Care Unit in China: A Hospital Based Study. Biomed Res Int.: volume 2015:908217.
- R. Q., et al. (2011). Toxoplasmagondii infection in humans in China. Parasit Vectors. 4: 165.