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Abstract  

In this study, we derive certain travelling wave solutions for the space and time 𝛽 −fractional Chen-Lee-
Liu equation, which serves as a fundamental equation in optical fiber modeling. It has many applications 
in wide variety of fields such as in the study of nonlinear dynamics, circuit design, signal processing, 
encryption and decryption of chaotic signals to mention a few. The tanh-coth scheme has been 
implemented to the space and time 𝛽 −fractional Chen-Lee-Liu model equation to achieve the exact 
travelling wave solutions. The study also presents the necessary constraint conditions for the existence of 
soliton solutions. The obtained wave profiles might play important role in fiber optics, nonlinear optics 
and telecommunications systems. Furthermore, numerical simulations are illustrated for some of the 
obtained results, through 3D and 2D graphs.  
 

          Keywords:  Chen-Lee-Liu equation, Travelling wave solutions, Fractional Chen-Lee-Liu equation, space 

and time 𝛽 −fractional derivative. 

 

1. INTRODUCTION 

      

The investigation of optical soliton solutions 

within the realm of fiber optic pulse propagation 
remains a vibrant area of research. Numerous 

models capturing this dynamic arise from diverse 
contexts. For instance, the Schrödinger-Hirota 

equation is examined for dispersive solitons, 

while the Fokas-Lennel equation is explored in 
scenarios characterized by low group velocity 

dispersion (GVD), among others. The wave 
phenomena of Chen-Lee-Liu equation (CLL) can 

be used in optical fiber. The signal pulse of the 

optical soliton solution (OSS) of the Chen-Lee-
Liu equation can be discussed in the optical fiber. 

Clearly, most of these systems are typically 
described in the time domain and are described 

by the field propagation at different frequencies. 
Most dynamical systems have complex partial 

differential equations and focus on these 

equations in fiber optic communication systems. In 

addition, significant advances were made during this 
period, such as the development of fiber amplifiers 

nonlinear effects on optical fibers and optical solitons 
for transmitting data through optical fiber losses. 

Many scholars have studied the CLL equation and 

investigated the OSSs. In that sense, (Zhang et al., 
2015) studied CLL equation through the Darboux 

transformation that included higher order components 
and obtained rogue wave solutions. Yildirim (2019) 

reported the dark, bright, and singular solitons of the 

CLL equation using the trial equation scheme. Biswas 
et al. (2018) have explored chirped OSSs from the 

CLL equation by using the extended trial equation 
scheme. A complex envelope travelling wave method 

was applied to CLL equation and explored by (Triki et 
al., 2018). Bansal et al. (2020) reported the dark, 

bright, type OSSs in the CLL equation using the lie 
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symmetry analysis. Recently Rehman et al. 

(2021) and Akinyemi et al. (2021) investigated 
the new and explicit OSSs of the CLL equation 

by utilizing the new extended direct algebraic and 

generalized (
𝐺′

𝐺
) -expansion methods, Rayhanul 

Islam et al. (2023) investigated the optical soliton 
solutions, bifurcation, and stability analysis of the 

Chen-Lee-Liu model and so on. 
 In this paper, we delve into the fractional Chen-

Lee-Liu equation utilizing the tanh-coth method 

to derive its precise traveling wave solutions. The 
remaining parts of the paper are as follows: the 

definition and some properties of beta fractional 
derivative has been explained in section 2. The 

tanh-coth technique has been discussed in section 

3. In section 4, mathematical analysis of space 
and time beta fractional Chen-Lee-Liu (CLL) 

equation. Section 5 provides the application of 
tanh-coth method to solve fractional CLL 

equation. Section 6 explains results and 

discussion and finally conclude in section 7. 
 

2. THE BETA DERIVATIVE 
The concept of incorporating memory effects into 

mathematical modeling has been a longstanding 

challenge. Traditional models often lack a natural 
framework to accommodate memory, as 

highlighted in works by (Podlubny 1998; Oldham 
1974), and Singh et al. (2017). Fractional 

derivatives, as introduced by Caputo et al. (1971, 

2015) and (Atangana 2016; Atangana et al., 
2016), offer a comprehensive explanation for this 

memory effect. (Khalil et al., 2014), introduced 
the "conformable derivative," which adheres to 

classical derivative properties such as the 

composite (chain rule), product rule, and quotient 
rule. Further analysis of this derivative was 

conducted by (Atangana et al., 2013), who 
established related theorems. For additional 

insights into fractional derivatives, refer to works 
by (He et al., 2017), (Abdeljawad et al., 2015), 

(Chung, 2015) and (Yusuf, 2019). Atangana 

(2016) also introduced the "beta-derivative," 
which addresses several limitations of fractional 

derivatives and finds applications in modeling 
various physical problems. 

The beta-derivative, as defined by Atangana 

(2016), is as follows:  

𝐷𝑡
𝛽
𝑓(𝑡) = lim

𝜀→0

𝑓(𝑡+𝜀(𝑡+
1

Γ(𝛽)
)
1−𝛽

)−𝑓(𝑡)

𝜀0
𝐴  ,                                                                                                

(1) 
Beta derivative possesses the following properties 

1. 𝐷𝑡
𝛽
(0

𝐴 𝑎𝑓(𝑡) + 𝑏𝑔(𝑡)) =

𝑎 𝐷𝑡
𝛽
𝑓(𝑡) + 𝑏0

𝐴 𝐷𝑡
𝛽

0
𝐴 𝑔(𝑡),                                                                  

(2) 

2. 𝐷𝑡
𝛽

0
𝐴 (𝑘) = 0,   for any constant  𝑘.                                                                                           

(3) 

3. 𝐷𝑡
𝛽

0
𝐴 (𝑓(𝑡).𝑔(𝑡)) =

𝑔(𝑡) 𝐷𝑡
𝛽
𝑓(𝑡) + 𝑓(𝑡) 𝐷𝑡

𝛽
0
𝐴 𝑔(𝑡),0

𝐴                                                                

(4) 

4. 𝐷𝑡
𝛽

0
𝐴 (

𝑓(𝑡)

𝑔(𝑡)
) =

𝑔(𝑡) 𝐷𝑡
𝛽

0
𝐴 𝑓(𝑡)−𝑓(𝑡) 𝐷𝑡

𝛽
0
𝐴 𝑔(𝑡)

𝑔2(𝑡)
,                                                                                      

(5) 

Consider 𝜀 = (𝑡 +
1

Γ(𝛽)
)
𝛽−1

ℎ, ℎ → 0, when 𝜀 →

0, 
We have 

5. 𝐷𝑡
𝛽

0
𝐴 𝑓(𝑡) = (𝑡 +

1

Γ(𝛽)
)
1−𝛽 𝑑𝑓(𝑡)

𝑑𝑡
,                                                                                              

(6) 

With  

𝜉 = 𝑤𝑥 −
𝑙

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

, for time 𝛽 − fractional 

derivative,                                                    (7) 

Where 𝑙 and 𝑤 are constants, and  

6. 𝜉 =
𝑤

𝛽
(𝑥 +

1

Γ(𝛽)
)
𝛽

−
𝑙

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

,                                                                                         

(8) 

for space and time 𝛽 − fractional derivative. 
 

 

3 METHODOLOGY 

3.1 Tanh-coth method 

The partial differential equation (PDE) given by 

𝑃(𝑢, 𝑢𝑡, 𝑢𝑥 , 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, … ) = 0,                               
(9) 

can be converted into an ordinary differential 

equation (ODE) 𝑄(𝑢′, 𝑢′′, 𝑢′′′,… ) = 0.                   
(10)  

Using the wave variable transform  𝜉 = 𝑥 − 𝑐𝑡. 
Equation (10) is then integrated as long as all terms 

contain derivatives, with the integration constants 
taken to be zero.  
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Introducing the new independent variable 

 

𝑌 = tanh (𝜇 𝜉)𝜉 = 𝑥 − 𝑐𝑡,                                                                                                              
(11) 

Where 𝜇 is the wave number, leads to the 
change of derivatives: 
𝑑

𝑑𝜉
= 𝜇(1 − 𝑌2)

𝑑

𝑑𝑌
,                                                                                                                            

(12) 
𝑑2

𝑑𝜉2
= −2𝜇2𝑌(1 − 𝑌2)

𝑑

𝑑𝑌
+ 𝜇2(1 − 𝑌2)2

𝑑2

𝑑𝑌2
.                                                                                  

(13)                                                                             
And so on. 

The tanh-coth method allows for the finite 
expansion: 

(𝜇 𝜉) = 𝑆(𝑌) = ∑ 𝑎𝑘𝑌
𝑘 +∑ 𝑏𝑘𝑌

−𝑘𝑀
𝑘=1 ,𝑀

𝑘=0                                                                                      
(14) 

Where 𝑀 is a positive integer, typically 
determined through the balancing method. We 

usually balance the highest derivative and the 
highest order of the nonlinear term in the 

equation. 
By substituting Eq. (14) into the reduced ODE, 

we collect all coefficients of each power of 

𝑌𝑘 ,   0 ≤ 𝑘 ≤ 𝑛𝑀 in the resulting equation. 

These coefficients must vanish, resulting in a 
system of algebraic equations involving the 

parameters  𝑎𝑘 , 𝑏𝑘 , 𝜇, 𝑎𝑛𝑑 𝑐. 
Finally, through this process, we obtain an 

analytic solution 𝑢(𝑥, 𝑡) in closed form. 

4. MATHEMATICAL ANALYSIS 
In this section we explore the mathematical 

analysis of space and time 𝛽 − fractional CLL 
model equation:                                                              

4.1. Space and time 𝜷 −fractional Chen-Lee-

Liu Equation 
We examine the progression of a slowly varying 

envelope represented by a family of Chen-Lee-

Liu equations (CLL), as formulated in Atangana 
(2013) and further explored by (Yusuf et al., 

2019). 

𝑖 𝐷𝑡
𝛽
𝑢 + 𝑎 𝐷𝑥

2𝛽
𝑢 + 𝑖𝑏(|𝑢|0

𝐴
0
𝐴 2) 𝐷𝑡

𝛽
0
𝐴 𝑢 = 0.                                                                                           

(15) 

In the above equation, 𝑢(𝑥, 𝑡) represents the 

normalized electric-field envelope, while  𝐷𝑡
𝛽

0
𝐴  

and 𝐷𝑥
𝛽

0
𝐴  denote beta derivatives as defined by 

Atangana (2016). The coefficients 𝑎 and 

𝑏correspond to the group velocity dispersion 
and the Bohm potential, respectively, which are 

significant in studying chiral solitons with quantum 

Hall effect. 
To solve Eq. (15), we start with transformation 

𝑢(𝑥, 𝑡) = 𝑢(𝜁)𝑒 iΘ(𝑥,𝑡) ,                                                                                                                        
(16) 

𝑢(𝑥, 𝑡), represents the shape of the pulse so that  

𝜁 =
𝑙

𝛽
(𝑥 +

1

Γ(𝛽)
)
𝛽

−
𝜗

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

,                                                                                                    

(17) 

And the phase component is given by  

Θ(𝑥, 𝑡) = −
𝑘

𝛽
(𝑥 +

1

Γ(𝛽)
)
𝛽

+
𝜔

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

+ 𝜑0(𝜁).                                                                       

(18) 

Let 𝑘 represent the soliton frequency and 𝜔 signify 

the wave number of the soliton. The function 𝜑0(𝜁)is 
an additional phase function that depends on the 

variable 𝜁 and 𝜗 denotes the soliton's speed. By 
substituting Eq. (16) into Eq. (15) and separating the 
real and imaginary components, we derive the 

following results: 

−𝜔𝑢 + 𝜗𝑢Θ′ + 𝑎𝑢′′ − 𝑎𝑢Θ′2 − 𝑎𝑘2𝑢 + 2𝑎𝑘𝑢Θ′ −
𝑏𝑢3Θ′ + 𝑏𝑘𝑢3 = 0,                                       (19) 
And 

𝑎(𝑢Θ′′ + 2𝑢′Θ′)− 𝜗𝑢′ − 2𝑎𝑘𝑢′ + 𝑏𝑢2𝑢′ = 0,                                                                               
(20) 

Where 𝑢′ =
𝑑𝑢

𝑑𝜁
, 𝑢′′ =

𝑑2𝑢

𝑑𝜁2
, Θ′ =

𝑑Θ

𝑑𝜁
, Θ′′ =

𝑑2Θ

𝑑𝜁2
. 

To solve the equations above, we employ the 
following ODE of the form                                                 

Θ′ = 𝑧1𝑢
2 + 𝑧2.                                                                                                                                  

(21) 

 

Where 𝑧1 and 𝑧2 are the nonlinear and constant chirp 
parameters to be determined. By substituting Eq. (21) 
into Eq. (20), we derive two algebraic equations that 

determine these chirp parameters. 

𝑧1 = −
𝑏

4𝑎
, 𝑧2 = 𝑘 +

𝜗

2𝑎
.                                                                                                                    

(22) 

Substituting Eq. (20) along with Eq. (21) into Eq. 

(19) yields the following result: 

𝑢′′ + 𝐴1𝑢 + 𝐴2𝑢
3+ 𝐴𝑢5 = 0,                                                                                                           

(23) 

Where  

𝐴1 =
𝜗2

4𝑎2
+
𝜗𝑘

𝑎
−
𝜔

𝑎
, 𝐴2 = −

𝑏𝜗

2𝑎2
, 𝐴3 =

3𝑏2

16𝑎2
.                                                                                   

(24) 
Applying the balancing principle in Eq. (23) results 

in  𝑀 =
1

2
, which is not in a closed form. To achieve 

closed-form solutions, we employ the transformation: 
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𝑢 = 𝑉
1

2,                                                                                                                                                
(25) 

Putting the above Eq. (25) in Eq. (23), we obtain 

4𝐴1𝑉
2+ 4𝐴2𝑉

3+ 4𝐴3𝑉
4+ 2𝑉𝑉 ′′ − 𝑉 ′2 =0.                                                                                   

(26) 

Applying the balancing principle in Eq. (26) 

gives 𝑀 = 1. 

5 APPLICATIONS 

This section deals with the Tanh-coth method to 

get the precise travelling wave solutions of the 
Chen-Lee-Liu equation. 

 

5.1 The solution of space and time 

𝜷 −fractional Chen-Lee-Liu equation 

In this part, we utilize the tanh-coth method to 
derive the solution of the equation referred to as 

Eq. (15).                                                                   
We aim to find the solution of Eq. (26) in the 

following form: 

𝑉(𝜉) = 𝑎0 + 𝑎1𝑌(𝜉) + 𝑏1𝑌
−1(𝜉).                                                                                                     

(27) 

By substituting 𝑉(𝜉) and its derivatives in eq. 

(26) and setting the coefficients of 𝑌𝑗 : 𝑗 =
−1,0,1 to zero, it produces a system of algebraic 
equations: 

12𝐴1𝑎1
2𝑏1 + 8𝐴1𝑎0𝑎1 + 48𝐴3𝑎0𝑎1

2𝑏1
+ 12𝐴2𝑎0

2𝑎1 − 4𝜇
2𝑎0𝑎1

+ 16𝐴3𝑎0
3𝑎1 = 0, 

24𝐴3𝑎0
2𝑎1

2 + 12𝐴2𝑎0𝑎1
2 + 16𝐴3𝑎1

3𝑏1
+ 6𝜇2𝑎1𝑏1 − 2𝜇

2𝑎1
2 + 4𝐴1𝑎1

2

= 0, 
4𝐴1𝑎1

3 + 4𝜇2𝑎0𝑎1 + 16𝐴3𝑎0𝑎1
3 = 0, 

3𝜇2𝑎1
2 + 4𝐴3𝑎1

4 = 0, 
48𝐴3𝑎0𝑎1𝑏1

2 + 12𝐴2𝑎0
2𝑏1 + 16𝐴3𝑎0

3𝑏1 +
12𝐴2𝑎1𝑏1

2 − 4𝜇2𝑎0𝑏1 + 8𝐴1𝑎0𝑏1 = 0,                       
(28) 

−2𝜇2𝑏1
2 + 16𝐴3𝑎1𝑏1

3 + 6𝜇2𝑎1𝑏1 + 4𝐴1𝑏1
2

+ 24𝐴3𝑎0
2𝑏1

2+ 12𝐴2𝑎0𝑏1
2 = 0, 

16𝐴3𝑎0𝑏1
3 + 4𝜇2𝑎0𝑏1 + 4𝐴2𝑏1

3 = 0, 
4𝐴3𝑏1

4 + 3𝜇2𝑏1
2 = 0, 

48𝐴3𝑎0
2𝑎1𝑏1 + 24𝐴2𝑎0𝑎1𝑏1 + 4𝐴1𝑎0

2 + 4𝐴2𝑎0
3

+ 4𝐴3𝑎0
4 − 𝜇2𝑎1

2 − 𝜇2𝑏1
2

+ 24𝐴3𝑎1
2𝑏1

2 − 12𝜇2𝑎1𝑏1
+ 8𝐴1𝑎1𝑏1 = 0. 

Solving this system Eq. (28), using maple 

software package. 
We obtain the exact solutions as 

𝑎0 = −
3

8
.
𝐴2

𝐴3
, 𝑎1 = 0, 𝑏1 =

3

8
.
𝐴2

𝐴3
, 𝜇 =

±
1

4
. √−

3

𝐴3
. 𝐴2, 𝐴1 =

3

16
.
𝐴2
2

𝐴3
                                     

(29) 

𝑢1,1(𝑥, 𝑡) = −
3

8
.
𝐴2

𝐴3
+

3

8
.
𝐴2

𝐴3
𝑐𝑜𝑡ℎ (

1

4
. √−

3

𝐴3
. 𝐴2 [

𝑙

𝛽
(𝑥 +

1

Γ(𝛽)
)
𝛽

−

𝜈

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

])        (30) 
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𝑢2,1(𝑥, 𝑡) = −
3

8
.
𝐴2

𝐴3
+
3

8
.
𝐴2

𝐴3
𝑡𝑎𝑛ℎ (

1

4
. √−

3

𝐴3
. 𝐴2 [

𝑙

𝛽
(𝑥 +

1

Γ(𝛽)
)
𝛽

−
𝜈

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

]).( 31) 

                                    𝐴2 = 1, 𝐴3 = 1, 𝐴1 =
3

16
.
𝐴2
2

𝐴3
, 𝑙 = 2, 𝜈 = −1, 𝛽 =

1

2
(32) 

 

 

𝑢3,1(𝑥, 𝑡) = −
3

8
.
𝐴2

𝐴3
+
3

8
.
𝐴2

𝐴3
𝑡𝑎𝑛ℎ (

1

4
. √−

3

𝐴3
. 𝐴2 [

𝑙

𝛽
(𝑥 +

1

Γ(𝛽)
)
𝛽

−
𝜈

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

]).         (33) 

 

𝑎0 = −
3𝐴2

8𝐴3
, 𝑎1 = −

3𝐴2

8𝐴3
, 𝑏1 = 0, 𝐴1 =

3𝐴2
2

16𝐴3
. ( 34) 

 

 
 

 

 
 

 
 

𝑢4,1(𝑥, 𝑡) = −
3

8
.
𝐴2

𝐴3
+
3

8
.

𝐴2

𝐴3𝑡𝑎𝑛ℎ(
1

4
√−

3

𝐴3
𝐴2𝜉)

.                                                                

(35) 

 
 

 
 

 

𝑢5,1(𝑥, 𝑡) = −
3𝐴2

8𝐴3
+

3𝐴2

16𝐴3
𝑡𝑎𝑛ℎ (√−

3

64𝐴3
. 𝐴2. 𝜉) +

 

 

  

FIGURE 1. (a) 3D-plot of the real, ( b) 3D-plot of the imaginary, (c) 3D-plot of modulus parts 

of the exact travelling wave solution of 𝑢11(𝑥, 𝑡). (d) 2D-plot of the exact travelling solution of 

𝑢11(𝑥, 𝑡). For the values 𝐴1 = 1,𝐴3 = −1,𝐴1 =
3𝐴2

2

16𝐴3
, 𝑙 = 4, 𝑣 = −1, 𝛽 = 0.5. 
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3𝐴2

16𝐴3
𝑐𝑜𝑡ℎ (√−

3

64𝐴3
. 𝐴2. 𝜉),                            

(36) 

𝐴1 =
3𝐴2

2

16𝐴3
.                                                                                                                                          

(37) 

𝑢6,1(𝑥, 𝑡) = −
3𝐴2

8𝐴3
−

3𝐴2

16𝐴3
𝑡𝑎𝑛ℎ (√−

3

64𝐴3
. 𝐴2. 𝜉) −

3𝐴2

16𝐴3
𝑐𝑜𝑡ℎ (√−

3

64𝐴3
. 𝐴2. 𝜉),                             (38) 

𝐴1 =
3𝐴2

2

16𝐴3
.                                                                                                                                           

(39) 

 
 

 
 

 

 

 

 

 

 

FIGURE 3. (a) 3D-plot of the real, ( b) 3D-plot of the imaginary, (c) 3D-plot of modulus parts of the exact travelling 

wave solution of 𝑢31(𝑥, 𝑡). (d) 2D-plot of the exact travelling solution of 𝑢31(𝑥, 𝑡), at 𝑡 = 0, 𝑡 = 0.2, 𝑡 = 0.4, 𝑡 =

0.6, 𝑡 = 0.8, 𝑡 = 1. For 𝐴1 = 1,𝐴2 = 1,𝐴2 = 1,𝐴1 =
3𝐴2

2

16𝐴3
, 𝑙 = 2, 𝑣 = −1, 𝛽 = 0.5. 

 
 

 

 

FIGURE 4. (a) 3D-plot of the real, (b) 3D-plot of the imaginary, (c) 3D-plot of modulus parts of the exact travelling 

wave solution of 𝑢4,1(𝑥, 𝑡). (d) 2D-plot of the exact travelling solution of 𝑢4,1(𝑥, 𝑡), at 𝑡 = 0, 𝑡 = 0.2, 𝑡 = 0.4, 𝑡 =

0.6, 𝑡 = 0.8, 𝑡 = 1. For 𝐴1 = 1,𝐴2 = 1,𝐴2 = 1,𝐴1 =
3𝐴2

2

16𝐴3
, 𝑙 = 2, 𝑣 = −1, 𝛽 = 0.5. 
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𝑢7,1(𝑥, 𝑡) =
3𝐴2

8𝐴3
−
3𝐼𝐴2

16𝐴3
𝑡𝑎𝑛ℎ (

√3√
1

𝐴3

8
. 𝐴2. 𝜉) +

3𝐼𝐴2

16𝐴3
𝑐𝑜𝑡ℎ (

√3√
1

𝐴3

8
. 𝐴2. 𝜉),                                     

(40) 

𝐴1 =
15𝐴2

2

64𝐴3
.                                                                                                                                         

(41) 

 
RESULTS AND DISCUSSION 

The tanh-coth method is employed to establish 

exact travelling wave solutions and other solitons 
for the space and time beta fractional Chen-Lee-

Liu equation. We obtained seven nontrivial 

solutions of which four numerical simulations 
were reported. Complex structures of solution 

𝑢1,1(𝑥, 𝑡) Eq. (30) in Figure 1. (a), multiple 

soliton solutions of 𝑢2,1(𝑥, 𝑡) Eq. (31) in Figure 

2. (c), kink structure depicted by 𝑢3,1(𝑥, 𝑡) Eq. 

(33) in Figure 3. (a), anti- kink shape by the 
solution 𝑢4,1(𝑥, 𝑡) Eq. (35) presented in Figure 4. 

(a). The solutions are in form of hyperbolic and 

complex functions. The plain understanding for 

the physical features and mechanisms to the 
reported solutions by suitable choice of 

parameter values are shown through 3D both real, 
imaginary, and modulus as well as in 2D plots. 

 
CONCLUSION 

In this work, we have investigated exact 

travelling wave solutions like hyperbolic and 
complex solutions to space and time fractional 

Chen-Lee-Liu equation with tanh-coth method. 
These solutions are favourable for understanding 

diverse nonlinear physical phenomena. The 

structure of the solutions was shown to be kink, 
anti-kink, multiple solitons and other complex 

shapes. The constraints conditions for the 
existence of soliton solutions are reported. The 

obtained results exhibited that the proposed 

approach is powerful, efficient and can be used to 
extract exact travelling wave solutions for other 

nonlinear partial differential equations that 
appear in various fields like engineering, optical 

fibers, oceanography, mathematical biology to 

mention a few.  
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