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Abstract

In this study, we derive certain travelling wave solutions for the space and time g —fractional Chen-Lee-
Liu equation, which serves as a fundamental equation in optical fiber modeling. It has many applications
in wide variety of fields such as in the study of nonlinear dynamics, circuit design, signal processing,
encryption and decryption of chaotic signals to mention a few. The tanh-coth scheme has been
implemented to the space and time S —fractional Chen-Lee-Liu model equation to achieve the exact
travelling wave solutions. The study also presents the necessary constraint conditions for the existence of
soliton solutions. The obtained wave profiles might play important role in fiber optics, nonlinear optics
and telecommunications systems. Furthermore, numerical simulations are illustrated for some of the

obtained results, through 3D and 2D graphs.

Keywords: Chen-Lee-Liu equation, Travelling wave solutions, Fractional Chen-Lee-Liu equation, space

and time B —fractional derivative.

1. INTRODUCTION

The investigation of optical soliton solutions
within the realm of fiber optic pulse propagation
remains a vibrant area of research. Numerous
models capturing this dynamic arise from diverse
contexts. For instance, the Schrddinger-Hirota
equation is examined for dispersive solitons,
while the Fokas-Lennel equation is explored in
scenarios characterized by low group velocity
dispersion (GVD), among others. The wave
phenomena of Chen-Lee-Liu equation (CLL) can
be used in optical fiber. The signal pulse of the
optical soliton solution (OSS) of the Chen-Lee-
Liu equation can be discussed in the optical fiber.
Clearly, most of these systems are typically
described in the time domain and are described
by the field propagation at different frequencies.
Most dynamical systems have complex partial
differential equations and focus on these

equations in fiber optic communication systems. In
addition, significant advances were made during this
period, such as the development of fiber amplifiers
nonlinear effects on optical fibers and optical solitons
for transmitting data through optical fiber losses.
Many scholars have studied the CLL equation and
investigated the OSSs. In that sense, (Zhang et al.,
2015) studied CLL equation through the Darboux
transformation that included higher order components
and obtained rogue wave solutions. Yildirim (2019)
reported the dark, bright, and singular solitons of the
CLL equation using the trial equation scheme. Biswas
et al. (2018) have explored chirped OSSs from the
CLL equation by using the extended trial equation
scheme. A complex envelope travelling wave method
was applied to CLL equation and explored by (Triki et
al., 2018). Bansal et al. (2020) reported the dark,
bright, type OSSs in the CLL equation using the lie
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symmetry analysis. Recently Rehman et al.
(2021) and Akinyemi et al. (2021) investigated
the new and explicit OSSs of the CLL equation
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Islam et al. (2023) investigated the optical soliton
solutions, bifurcation, and stability analysis of the
Chen-Lee-Liu model and so on.

In this paper, we delve into the fractional Chen-
Lee-Liu equation utilizing the tanh-coth method
to derive its precise traveling wave solutions. The
remaining parts of the paper are as follows: the
definition and some properties of beta fractional
derivative has been explained in section 2. The
tanh-coth technique has been discussed in section
3. In section 4, mathematical analysis of space
and time beta fractional Chen-Lee-Liu (CLL)
equation. Section 5 provides the application of
tanh-coth method to solve fractional CLL
equation. Section 6 explains results and
discussion and finally conclude in section 7.

2. THE BETA DERIVATIVE

The concept of incorporating memory effects into
mathematical modeling has been a longstanding
challenge. Traditional models often lack a natural
framework to accommodate memory, as
highlighted in works by (Podlubny 1998; Oldham
1974), and Singh et al. (2017). Fractional
derivatives, as introduced by Caputo et al. (1971,
2015) and (Atangana 2016; Atangana et al.,
2016), offer a comprehensive explanation for this
memory effect. (Khalil et al., 2014), introduced
the “"conformable derivative,” which adheres to
classical derivative properties such as the
composite (chain rule), product rule, and quotient
rule. Further analysis of this derivative was
conducted by (Atangana et al., 2013), who
established related theorems. For additional
insights into fractional derivatives, refer to works
by (He et al., 2017), (Abdeljawad et al., 2015),
(Chung, 2015) and (Yusuf, 2019). Atangana
(2016) also introduced the "beta-derivative,"
which addresses several limitations of fractional
derivatives and finds applications in modeling
various physical problems.

The beta-derivative, as defined by Atangana
(2016), is as follows:
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for space and time 8 — fractional derivative.

3 METHODOLOGY
3.1 Tanh-coth method

The partial differential equation (PDE) given by
P(u' Uty Uye) Uyeser U ) =0,

(9)

can be converted into an ordinary differential
equation (ODE) Q(u',u",u'",...) = 0.

(10)

Using the wave variable transform & = x — ct.
Equation (10) is then integrated as long as all terms
contain derivatives, with the integration constants
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Introducing the new independent variable

Y =tanh(u &) = x —ct,

(11)

Where u is the wave number, leads to the
change of derivatives:

d d
a (1 -v? e
(12)

2 2
j—gz = —2u2Y(1 - yz)dd—y + (1 - v?)? %
(13)

And so on.
The tanh-coth method allows for the finite
expansion:

W& =5 =%, a Y + Y=t b Yk,
(14)

Where M is a positive integer, typically
determined through the balancing method. We
usually balance the highest derivative and the
highest order of the nonlinear term in the
equation.

By substituting Eq. (14) into the reduced ODE,
we collect all coefficients of each power of
Y*, 0 < k < nM in the resulting equation.
These coefficients must vanish, resulting in a
system of algebraic equations involving the
parameters ay, by, u, and c.

Finally, through this process, we obtain an
analytic solution u(x, t) in closed form.

4. MATHEMATICAL ANALYSIS

In this section we explore the mathematical
analysis of space and time g — fractional CLL
model equation:

4.1. Space and time B —fractional Chen-Lee-
Liu Equation

We examine the progression of a slowly varying

envelope represented by a family of Chen-Lee-

Liu equations (CLL), as formulated in Atangana

(2013) and further explored by (Yusuf et al.,
2019).

iADPu + a4D?Pu + ib(lul)4Dfu = 0.

(15)

In the above equation, u(x, t) represents the
normalized electric-field envelope, while S‘Df
and S‘Df denote beta derivatives as defined by
Atangana (2016). The coefficients a and

bcorrespond to the group velocity dispersion
and the Bohm potential, respectively, which are

significant in studying chiral solitons with quantum
Hall effect.

To solve Eq. (15), we start with transformation
u(x, t) = u(Q)e®*o,

(16)

u(x, t), represents the shape of the pulse so that

1 1\f w 1\f
¢=5(+in) —5(t+mn)
(17)

And the phase component is given by

0(x,t) = —%(x +%ﬁ))ﬁ +%(t + %ﬁ))ﬁ + 9o(O).
(18)

Let k represent the soliton frequency and w signify
the wave number of the soliton. The function ¢, ({)is
an additional phase function that depends on the
variable ¢ and ¥ denotes the soliton's speed. By
substituting Eq. (16) into Eq. (15) and separating the
real and imaginary components, we derive the
following results:

—owu +9u®’ + au” — au®'? — ak?u + 2aku®’ —
bu30’ + bku? =0, (19)
And

a(w®” + 2u'0") — Yu' — 2aku’ + bu?u’ =0,

(20)

, du , d*u ., dO .,
Where u’' = E,u = d—(z,@ =d_{’® = 4z
To solve the equations above, we employ the
following ODE of the form
0 = zyu? + z,.

(21)

daze

Where z, and z, are the nonlinear and constant chirp
parameters to be determined. By substituting Eq. (21)
into Eq. (20), we derive two algebraic equations that

determine these chirp parameters.

Z1 = _:;a,ZZ = k +%

(22)

Substituting Eq. (20) along with Eq. (21) into Eq.
(19) yields the following result:

u” + Aju+ Aud + Aub =0,

(23)
Where

92 vk w bV 3b?
A=t oM T e h T g
(24)

Applying the balancing principle in Eq. (23) results
in M= % which is not in a closed form. To achieve
closed-form solutions, we employ the transformation:
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u=>"Vz2
(25)
Putting the above Eq. (25) in Eg. (23), we obtain

4A, V2 + 4A,V3 + 4AV* + 2VV" — V"2 =0.
(26)

Applying the balancing principle in Eq. (26)
givesM = 1.

5 APPLICATIONS

This section deals with the Tanh-coth method to
get the precise travelling wave solutions of the
Chen-Lee-Liu equation.

5.1 The solution of space and time
B —fractional Chen-Lee-Liu equation

In this part, we utilize the tanh-coth method to
derive the solution of the equation referred to as
Eqg. (15).
We aim to find the solution of Eq. (26) in the
following form:
V(&) =ay+aY(&)+bY ().
(27)
By substituting V(&) and its derivatives in eq.
(26) and setting the coefficients of Y/:j =
—1,0,1 to zero, it produces a system of algebraic
equations:
12A1a?b; + 84,aya, + 4843a,a?b,
+ 124,a2a, — 4utaya,
+ 164sa3a, =0,
24Aza2a? + 124,a4a? + 16A3a3b,
+ 6ula, by — 2u*a? + 4A,a?
= O’
4A a3 + 4utaga, + 1645a4a3 = 0,
3ua? + 4Azaf =0,
48Asa9a,b% + 12A,a2b, + 16A35a3b; +
12A,a,bf — 4p?ayb, + 84,a0b; =0,
(28)
—2u®b? + 16Aza, b3 + 6u?a, by + 4A,b?
+ 24A3a§b2 + 124,a,b? =0,
16A5ayb3 + 4uagb, + 44,b3 =0,
4A5b% + 322 = 0,
48Azata b, + 24Aa0a, by + 4A ak + 44,03
+4Azay — pPai — p’by
+ 24A5a?b? — 12p%a, b,
+84,a,b, = 0.
Solving this system Eq. (28), using maple
software package.
We obtain the exact solutions as

3 4 3 A

ao:_g-Az 1:0;b1—_ 2:/1—
I 3 4

ty A3'A2' A =15 As

(29)
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FIGURE 1. (a) 3D-plot of the real, ( b) 3D-plot of the imaginary, (c) 3D-plot of modulus parts
of the exact travelling wave solution of u,4 (x, t). (d) 2D-plot of the exact travelling solution of

2
uq11(x, t). For the values 4; = 1,43 = —1,4; = 13:42 ,Jl=4,v=-1,=0.5.
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FIGURE 4. (a) 3D-plot of the real, (b) 3D-plot of the imaginary, (c) 3D-plot of modulus parts of the exact travelling
wave solution of uy; (x, t). (d) 2D-plot of the exact travelling solution of uy;(x,t),att =0,t = 0.2,t = 0.4,t =

2
0.6,t=08t=1Ford, =1,4, =14, =14, =%,l =2 v=-1, f=05.
3
FIGURE 3. (a) 3D-plot of the real, ( b) 3D-plot of the imaginary, (c) 3D-plot of modulus parts of the exact travelling
wave solution of us4(x, t). (d) 2D-plot of the exact travelling solution of usz; (x,t),att = 0,t = 0.2,t = 0.4,t =
2
0.6,t=08t=1Ford; =1,4, =14, =1,A; =22 |=2 v=—1, f = 0.5.
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RESULTS AND DISCUSSION

The tanh-coth method is employed to establish
exact travelling wave solutions and other solitons
for the space and time beta fractional Chen-Lee-
Liu equation. We obtained seven nontrivial
solutions of which four numerical simulations
were reported. Complex structures of solution
u; 1(x,t) Eq. (30) in Figure 1. (a), multiple
soliton solutions of u, ; (x,t) Eq. (31) in Figure
2. (c), kink structure depicted by uz4(x,t) Eq.
(33) in Figure 3. (a), anti- kink shape by the
solution u, 4 (x, t) Eq. (35) presented in Figure 4.
(a). The solutions are in form of hyperbolic and
complex functions. The plain understanding for
the physical features and mechanisms to the
reported solutions by suitable choice of
parameter values are shown through 3D both real,
imaginary, and modulus as well as in 2D plots.

CONCLUSION

In this work, we have investigated exact
travelling wave solutions like hyperbolic and
complex solutions to space and time fractional
Chen-Lee-Liu equation with tanh-coth method.
These solutions are favourable for understanding
diverse nonlinear physical phenomena. The
structure of the solutions was shown to be kink,
anti-kink, multiple solitons and other complex
shapes. The constraints conditions for the
existence of soliton solutions are reported. The
obtained results exhibited that the proposed
approach is powerful, efficient and can be used to
extract exact travelling wave solutions for other
nonlinear partial differential equations that
appear in various fields like engineering, optical
fibers, oceanography, mathematical biology to
mention a few.
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