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ABSTRACT

The major goal of this paper is to extract exact travelling wave solutions and investigate the effects the
fractional parameter on the dynamic response of soliton waves of four-time beta fractional Boussinesq-
like equations. Sine-cosine method has been used to achieve explicit soliton solutions of these equations
that emerged in coastal and ocean engineering. The obtained solutions have been studied in the form of
hyperbolic and trigonometric functions. The behavior of some of the soliton solutions are demonstrated
via 2D and 3D graphs. As a result of the fractional effects, physical changes are observed. The obtained
results show that the proposed method is more convenient, powerful and efficient than other analytical
approaches. The extracted results might improve our understanding of how waves propagate and could
be beneficial to coastal and ocean engineering as well as other fields.

Keywords: Sine-cosine method; The Boussinesg- like equations; Time beta fractional derivative; the exact

solutions.

1. INTRODUCTION

Mostly natural phenomena occurring in the
universe are interpreted by nonlinear differential
equations of integer order as well as non-integer
order. Nonlinear fractional differential equations
(NFDEs) respond promptly and effectively in a
variety scientific and engineering fields,
including dynamical systems, electromagnetic,
technology, fusion plasma, viscoelastic, biology,
signal processing, electrochemical, optical fiber,
oceanography, solid state physics, geochemistry,
finance, among others. Many intriguing aspects
of fractional calculus and flexibility of fractional
theory have captivated the attention of many
researchers (Sadiya et al. 2022; Khantun et al.,
2022).

Fractional derivatives are defined in several
ways, including conformable derivatives (Khalil
et al.,, 2014), Atangana-Baleanu derivatives
(Atangana and Baleanu, 2016), beta derivatives
(Yepez-Martinez et al., 2018; Atangana et al.,
2016), M-truncated derivative (Sousa et al.,

2018), and Modified RL fractional derivatives
(Jumarie, 2009). A fractional derivative can have a
variety of properties, so that it is possible to use the
one that is most suitable for the problem at hand. In
fact, the study of fractional derivative operators is a
popular topic. A lot of research has been done in this
area, leading to an excessive number of findings e.g.
see in (Ghanbari and Baleanu, 2020; Khater and
Ghanbari, 2021; Ghanbari, 2019; Ghanbari et al.,
2019).

The areas that focus on the examination of wave
patterns in the physical world are fascinating since
they address an extremely scientific and developed
idea of soliton waves. The soliton wave is an important
nonlinear phenomenon. Solitons offer an intriguing
perspective on nonlinear physical processes. Finding
solitons of nonlinear phenomena has recently gained
popularity among mathematicians and scientists. The
primary advantage of soliton solutions is the fact that
they can be used for evaluation equations with various
kind of nonlinearities that are both integrable and non-
integrable. The exact soliton solutions of fractional
differential equations (FDESs) has been crucial in many
kinds of physical science research. Consequently,
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several approaches have been devised for
computing FDEs solutions. Among them are: the
extended tanh-function method (Zaman et al.,

2022a, b), generalized (%’)-expansion method

(Uddin et al., 2022), modified F- expansion
method (Ahmad et al., 2023), Sardar sub
equation method (Ali et al., 2023), improved F-
expansion method (Akram et al., 2023) extended
simple equation method (Ahmad et al., 2023),
unified method (Ali et al., 2023) and so on.

In this paper, we utilize the Sine-cosine technique
introduced by Wazwaz (2004) to derive a set of
new exact solutions for four distinct types of time
beta fractional Boussinesg-like equations. For
further context, relevant works include those by
(Wazwaz, 2012), Elsami et al. (2014), Darvishi
et al. (2017), Darvishi et al. (2018) and Osman
(2019), each contributing to the understanding
and development of this approach. The equations
under consideration are expressed in the
following forms:

thtﬁu — Uy — (6U U + Uyyy)y = 0,
1)
thtﬁu — Uy — (6U?u, + thtﬁux)x =0,
(2)
thtﬁu — Dfux — (6utu, + Dfuxx)x =0,
3)
thtﬁu — (6UUy + Uyyy), = 0.
4)

Where Dfu is the time p — fractional
derivative of u (Atangana’s comformable) order

o d
0<ﬁ<1|nt|met>0,ux=£, and u,, =
0%u

ox?’

Eqg. (1) includes the fourth spatial derivative
Ur@Nd the dissipative termu,,. In Eq. (2),
Urrxx 1S replaced by a mixed spatial-temporal

term.fo Uy IN EQ. (3), uy, Is replaced

bny U, and u,.,., 1S replaced by a spatial-
temporal terme Uy, Lastly, Eq. (4) lacks the
dissipative term u,,.

These equations (1)-(4) are non-integrable and
are used as models in ocean and coastal sciences
when S =1. Some of these equations are

employed in wave modeling and mathematical
modeling of tidal oscillations.

This paper is structured as follows: A brief definition
and properties of beta fractional derivative are given
in section 2. Section 3 provides a detailed explanation
of the Sine-cosine method. Section 4 discusses the
application of the Sine-cosine method to the time
B —fractional Boussinesg-like equations represented
by equations (1)-(4) respectively. Section 5 offers a
physical interpretation of some of the solutions
obtained. Finally, Section 6 summarizes the main
conclusions drawn from the study.
2. PROPERTIES OF BETA DERIVATIVE

Some properties of the Beta derivative are given
using the following definition and theorem:
Definition (2.1), (Atangana et al., 2016):

Df (u(®)) )
1_
u<t+e(t+%ﬁ)> >—u(t)
= lim )
-0 &
Wh,ere rp) = fooo th=le7tdt, 0<p <1.
and
D (u(®) = %.

Theorem: (2.1) Let u(t) and v(t) be g —
differentiable functions, for all § € (0,1) andt > 0.
Then

@ D’ (au(t) + bv(t)) = aDPu(r) +
bDPv(t),vabeR
0D’ (u(®). v()) =
u(®)DF (v(©) + v(©)DF (u(®)),
© Df (55) =

v(©)DP (u(®)-u@® b (v(®))
v(t)?2 !

(d) D (k) = 0, where k €
R,

@ pf () = (e+-1) w0,

308

| PUBLICATION OF YUSUF MAITAMA SULE UNIVERSITY, KANO

r) dat



YJPAS Vol 1, Issue 1, Pages 289-300

ISSN: 3043-6184 Balili A. 2025

Relevant works on this context of beta
fractional derivative see (Yusuf, et al.,
2019; Yiasir Arafat, et al., 2023; Fiza et al.,

3. METHODOLOGY

In this section, we give a description of the sine-
cosine method which is used to obtain exact
solutions of partial differential equations.

3.1 The Sine-Cosine Method

Consider a nonlinear partial differential equation
P(u; Ugy Uy Uyexy Uty Uges Dtﬁu' Dfu’ thtﬁu’
pu,.)=00<p<1

(5)

Which describes the dynamical wave solution
u(x, t). The steps of the sine-cosine method has
been proposed in (Wazwaz, 2004) as follows:

Step 1: To find the travelling wave solution of
equation (5), we introduce

" B
u(x, t) =U(2),andz = wx — — (t + L) .

B rp)
(6)
Step 2: we use the following changes
o __,4 9 _ pad> 9 _ _d
at dz’ otz dz2’ ’ox  dz’
02 _ 24
axz - dZZ L)
(7)

Now, utilizing Eq. (7) transforms the partial
differential equation Eq. (5) into an ordinary
differential equation:

Qw,u’,u",..)=0,

(8)

Where U’ denotes Z—Z.

Step 3: Simplify Eq. (8) by integration if
possible

Step 4: The solution will be expressed in the
following form:

u(x,t) = Asin*(9 z),

(9)

or in the form

u(x,t) = Acos* (9 2),|z| < %,
(10)

Where 4,9, and u are parameters to be
determined.

YA
< =
1zl <5

2024).

Step 5: Hence, the derivatives of Eqg. (9) take the
following form:
U(z) = Asin* (¥ z),
(11)
U™(z) = "sin™ (9 z),
(12)
U (z) = nudA™ cos(V z) sin™ 1(9 z),
(13)
UL(z) = —n?9%u?2sin™ (9 z) + n9? 2 u(nu —
1)sin™2(9 z2). (14)
And the derivative of Eq. (10) becomes
U(z) = Acos* (9 2),

(15)

U™(z) = "cos™ (9 z),

(16)

UL (z) = —n?9%u?22cos™ (9 z) + n9? 2 u(u —

1)cos™ 2(Y 2).

And so on for further derivatives.
We substitute Eq. (10) to (17) into the previously
obtained reduced equation Eq. (8), balancing the
terms of the cosine functions when Eqg. (10) is
used, or balancing the sine functions when Eq.
(9) is used. Finally, we solve the resulting system
of algebraic equations with the assistance of
computerized  symbolic  computation  to
determine all possible values of the parameters
A,9,and u.

(17)

4. APPLICATION

In this section, we utilize the sine-cosine method to
derive exact solutions for four distinct 3-time
fractional Boussinesqg-like equations.
4.1 The First Timep — Fractional Boussinesq -
like Equation

We consider The First Time -Fractional Boussinesq-
like Equation given by

thtﬁu — Uy — (6U? U, + Uyyy), = 0.

(18)
By applying the following wave transformation:
u(x, t) = u(2),
B
= _v 1
Where z = wx 5 (t + F(ﬁ)) ,
(19)

Equation (18) reduces to ordinary differential
equation:
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w?u" — @w?u" — @(6U Uy + Uyyy) = 0,
(w? —@wHu'"(2) — w(6wu?(2)u'(2) +
w3uln(z))l — O,

(20)

Integrate once

(w? — @)U’ (2) — w(6wu?(2)u’(z) +
@3u""(2)) =0,

(21)

Integrate again

3
(w? —@)u(z) — w<6w.% + w3u”(z)>
=0,
(w? —@Hu(2) — 2w%ud(2) —@*u'’(2) = 0.
(22)
Eq. (22) is the reduced ordinary differential
equation.
Assume that Eg. (22) has a solution in the form
of
u(z) = Asin*( 2),
(23)
u'(z) = u A9 cos(¥ z).sin* 1V z),
(24)
u"(z) =Au9 (-9 usin*(9 z)
+9 (u — Dsin*2(9 2),

= —Au?9?%sint(9z) + Apu9*(u—
1)sin*2(9 z).
(25)
For the cosine we have
u(z) = Acos* (9 z),
(26)
u'(z) = Apcost (9 z). =09 sin* (9 z2),
(27)

= —Au9cos* 1Y z)sin* (Y z),
u''(z) = —Au*9%cos*(9 z) + 19%u (u —
1DcosH2(I z).
(28)

Substitute Eq. (23) and Eqg. (25) in equation Eq.

(22), we have
(w? — @?) Asin* (9 2) — 2 @2 3sin3* (I z)
— oA u29%sint (9 z)
+Au9%(u—1)sin* 29 2)} =0,
(29)
(w? — @?) Asin* (9 z) — 2 @2 3sin3* (I z)
+ @w*A p?9?%sint (9 z)
—w*Apu9?(u— 1) sin* 29 z) = 0.
(30)
Eq. (30) is fulfilled if the following system of
algebraic equations is satisfied:

u—1+0,
3u=u—2
2@ B —-w*Aud?*(u-1) =0,
(w?> —@w?) A+ w*Au? 9% = 0.
Solving the system using Maple, we obtained

=1, A=+ T g = YTt
(31

Using the cosine method given by Eq. (26) will yield
the same results.

Given Eq. (31), the solutions obtained from Eq. (23)
and Eq. (19) are as follows:

u;1(x,t) = @i csc[ mz?‘ﬂ (w x + 2(t +
w w

1 \B
) )| (32)
And for cosine function, we have

Voi-o? Vol—wZ

U, (x,t) = www sec[ wwzw (w x+ % (t +

1 \B
) ) (33)

Eq. (32) and Eq. (33) are valid only if @? — w? > 0,
so that w? < w?, i=+—-1.

However, for w? > w? we obtain the following
solutions

2 _ )2 2 _~2
uz(x, t) = —\/www csch [‘/wwzw <wx +

w 1\P
i) )
@ Sech [ wz_zwz (w x+ = (t +
@ @ B

(35)

(34)

Uqg (X, t) =

) )}
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4 -3 2 -1 0 1 2 3 4

ives

: | F=0.50 B=0.75 p=0.95 |
(c)p=0.95 (d) combined 2D
FIGURE 1. The graphical illustration for beta fractiona derlg/ ive of sojut |u 2, )| Withw =2,w =
1,t =15 u=1.(a)  =0.5,(b)B = 0.75, (c)ﬁ fc;;Com ns;f{l Hh for'distinct values
of 5. ( 4 4)
g-z The SecIQEd I’E[imetp-Fractional Solving system Eq. (44), we obtain
oussinesg-like Equation o ——)
In this section, we investigate the second B-time u=-1, A= iu,
fractional Boussinesg-like equation @
‘/ZD'Z — (1)2
Dzﬁu Uy, — (6u? ux+Dtt Uy), = 0. 9=+—
W
\(/?/?e)use the wave transformation Similar results are also achieved when employing the
cosine function.
u(x t) = u(2),

8 As a result, the following solutions were derived:
(37)
Eq. (35) reduces to

w*u" —w?u" — w(6ulu, + Uy, ) =0,

(38)
(w —w)u'"(2) — w(6wu?(2)u'(2) +

2 III(Z)) — 0
(39)
Integrating Eq. (38) with respect to z once, we
have
(a) —w)u'(z) — w(6wu?(2)u’'(2) +

2 III(Z)) — O
(a) w)u'(2) — 6w?u?(2)u'(z) —

2 2 III(Z) — 0

(40)
Integrating Eq. (40) with respect to z again, we
obtain
(w? —@mHu(z) — 20%u3(2) — w?w?u"(2) =
0.
(41)

Now, Eq. (41) is the reduced ordinary
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FIGURE 2. (b)

FIGURE 2. (a)

1 2 3

x

F=0.50 F=0.75 §=0.95 |
FIGURE 2. (d) Combined 2D

FIGURE 2 (¢)

FIGURE 2. The graphical illustration for beta fractional derivative of solution |u,(x, t)|
withm =2,0w=-3,t=1.5 u=-1.(a) B = 0.5,(b)B =0.75,(c)B =
0.95, (d)Combined 2Dgraph for distinct values of .

_ Vw?2-w? [VoZ —w? w 1 \A

Uy, (2) = - csc_ — (wx+E(t+ ?ﬁ)) )]
1 \A\] 2 2

rﬁ)) )_,(1) <w, (45)

_ Vw?2-w? [V@?—w? w
Uy, (2) = T (wx +E(t+

B -

%ﬁ)) ) , ol <w?
(46)
For w? > w? we also obtained the following
solutions:

 Nora? VT 7
Uyz(2) = —i csch wx+

w w w
B
w 1
2 i) )]
(47)
Jori—o? Jaol—o?

Upy(2) = www sech[ wmww <wx + %(t +

4

(48)
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4.3 The Third Time B —Fractional
Boussinesq -like Equation

In this section we study the third time beta-
fractional Boussinesg- like equation:

thtﬁu - uft — (6uu, + Dfuxx)x = 0.
(49)

Using the travelling wave transformation:

u(x, t) = u(z),
B
w 1
Z—(D'X—E(t'*'rﬁ)) .

Substituting these in Eq. (49) gives
(0? + mo)u" (z) — w(6u?(2)u'(2) —
wzwu”’(z))’ =0,
(50)
Integrating twice and setting the constants of
integration to zero, we obtain:
(w? + ww)u(z) — 2w%u3(2) + w3wu'' (2) =
0.
(51)
Assuming that Eg. (51) has a solution in the
form:

u(z) = Asin*(9 2),
Where w and @ are constants, substituting Eq.
(23) and Eq. (25) into Eq. (51) yields:

(w? + ww)Asin#(9 z) — 2w?(Asin* (I 2))3 +

w3w(—Ap?9% sin* (9 z) + A u9?(u —
Dsin#*~2(9z)) =0,
(52)

(w? + ww)Asin* (9 z) — 2@ 223 sin®* (I z) —

@3 wAp?9?sin* (9 z) + w3wAud?(u —

1) sin*2(9 z) = 0.

(53)

By equating the exponents and coefficients of each
pair of sine functions to zero, we derive the following
system of algebraic equations:

u—1+0,
3u=p—2,
(w? + ww)A — w3wAu?9? =0,

(54)

2@ + @3 wAu9?(u—1) = 0.
Solving the system Eq. (54) yields
pu=—1,1= i\/wzz;ww’ 9 = iw/wiz):w).

(55)
Consequently, for ww + @? > 0, we obtained the
following solutions

2
Uz, (2) = Vo ;ww csc [\/wi:);w) (w X — % (t +

N
o) )| 0
and

us;(2) = \/w::ww sec [‘/w:;w) <w x — %(t +
N

o) )] &7

However, for ww + @w? < 0, gives the following

solutions

Uz3(2) = —i _w;_ww csch [“ _w;(‘z)+w) (w X —

w 1 B

AGESN! (58)
and

Uz, (2) = y sech [7@;‘;”13) (w x —

w 1 B

2 e+ -5) )] (59)
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FIGURE 3. (a)

FIGURE 3. (¢) x

[— p=0.50 F=0.75 p=0.95 |
FIGURE 3. (d)

FIGURE 3. The graphical illustration for beta fractional derivative of solution |uz1(x,t)| withw = 2,w = 1,t = 1.5,
u=-1(a) B8 =0.5,(b)B =0.75,(c)B = 0.95, (d)Combined 2D graph for distinct values of S.

4.4 The Fourth Time B —Fractional w?u'(z) — 6w*u*(2u'(z) —@*u""'(z) = 0,
Boussinesg- like Equation 64) o

In this section we study the fourth time beta- Integrating Eq. (64) again gives

fractional Boussinesq like equation: w?u(z) - 2w%u@2) —w*u"(2) = 0.

D*#u— (6utu, +uf ), =o0. (65)

(6%) ( 1+ o) Where @ and w are constants. Substituting Eq. (23)

and Eq. (25) into Eq. (65) gives

Using the travelling wave transformation: v panl o
wAsin* (9 z) — 2w A° sin°# (9 z) —

u(x, t) = u(z),
© L \B w*(—Ap?9? sin* (9 z) + A p 9 (u —
2Oy (e+ @) ' Dsint~%(9 z)) = 0,
Substituting these in Eq. (60) becomes (66)
w?u" (z) — w(6u?u, + Uyyy) =0, w?Asin* (Y z) — 2w 2?23 sin®* (9 z)
(61) + @*A u?9? sin* 9 z)

—@*Aud?(u — 1) sin*2(9 z) = 0.
w?u" (z) — w(6u?wu'(2) + w3u'"'(z) =0,

(62) (67)

Integrating Eqg. (62) once, we have By setting the exponents and coefficients of each pair
w?u'(z) — w(6wu?(z)u'(z) + w3u""'(z) = 0, of sine functions to zero, we derive the following
(63) system of algebraic equations:
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FIGURE 4. ()

’ p=0.75 p=0.95 |
FIGURE 4. () FIGURE 4 (d)

FIGURE 4. The graphical illustration for beta fractional derivative of solution |uy,(x,t)| with@w = 5,0 =
3,t =15 u=-1.(a) 8 = 0.5,(b)B = 0.75, (c)B = 0.95, (d)Combined 2D graph for distinct
values of 5.

|[— p=0.50

u—1=+0,
3u=u—2, 5 PHYSICAL EXPLANATION
w?1+ @A p?9? =0,

(68) In this section, we generated various types of exact

solutions for Equations (1)-(4) using the Sine-cosine
approach. These solutions are in the form of
trigonometric and hyperbolic functions.

2w —w*Aud?(u—1) = 0.
Upon solving the system of equations Eq. (68),

we obtain: w wi Fig 1. (a)-(c) Depicts modulus of solutions for
p=-l A=x_, d=%_7 lug1 (x, t)], Eq. (32) with various parameter values,
(69) . . w=2,w=1,u=—1,/1=‘/—§,19=\/—g,aswellas
Consequently, we obtained the following 2 4
solutions the beta fractional order values, f = 0.5 for (a),
© wi © 1 \B f = 0.75 for (b) and f = 0.95 for (c). We
Uy (2) = —csc [g (wx - E(t + Tﬂ)) )] observed multiple solitons with varying heights and
(70) positions. (d) Shows the effect of beta fractional order
and values in combined 2D wave profile with g = 0.5,
_ o rwi _w 1 0.75, 0.95 andt =1.5. We observed the wave
Uaz = wsec[wz (wx B (t + F(B))) ] propagates in the x-direction for increasing values of

(71)
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B. For specific values of the parametres w = 2,
V5 V5

V5 9 =—Y] the 3D
2 6

wave profile of the solution |u,,(x,t)| which
depicts periodic solitary wave corresponding to
Fig 2.(a)-(c) with different beta values g =
0.5 for (a), B =0.75 for (b) and B =

0.95 for (c).. Moreover, the combined 2D graph
is shown in Fig. 2(d) with distinct beta values,
B =0.5, 0.75, 095 and t = 1.5.

Fig. 3(a)-(c) represents the periodic wave
structure of the solution |uz,(x,t)| for the
parameter values =2, w=1, u=-1,1=

v3 6 with B =05 for(a), B=

9=
2 4

0.75 for (b) and B = 0.95 for (c)and the 2D
graph is plotted in Fig. 3(d) with beta values g =
0.5, 0.75, 0.95 and t = 1.5, which shows the
effect of beta fractional order. Fig. 4(a)-(c)
illustrates the 3D wave structure of the solution
|ug 1 (x, t)| representing singular soliton solution
with parameter values @ =5, w =3, u = -1,
A= g 9 = 3/25, and for specific values of the

beta: B =05 for (a), B =
0.75 for (b) and B = 0.95 for (c). The 2D
combined wave profiles are shown in Fig. 4(d)
for § =0.5 0.75, 0.95andt =1.5 to show
the effect of beta fractional order. From the above
discussion, it is obvious that the sine-cosine
approach can provide different types of wave
structures to fractional Boussinesq-like equations
with beta derivative for various values of
parameters.

w==-3, u=-1, A=

The obtained solutions derived through this
method play a crucial role in understanding the
structure and dynamic behavior of the problem
at hand. The method proposed in this work is
straightforward, dependable, and effective, with
the potential to be extended for studying and
solving numerous other nonlinear evolution
equations across various scientific and
engineering disciplines.

CONCLUSION

In this paper, we employed the sine-cosine
method to obtain travelling wave solutions for
four distinct Beta fractional Boussinesq-like
equations. The obtained results include singular

traveling wave soliton solution, periodic soliton
solutions and multiple soliton solution which involve
trigonometric functions, hyperbolic functions and
complex solutions as well. We examined all
constraints that guarantee the existence of these new
exact solutions. The results obtained from this study
are anticipated to be highly beneficial in numerous
areas of mathematical physics, costal engineering and
applied mathematics, including fluid dynamics,
nonlinear optics, plasma physics, and other related
fields.
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