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ABSTRACT 

The major goal of this paper is to extract exact travelling wave solutions and investigate the effects the 
fractional parameter on the dynamic response of soliton waves of four-time beta fractional Boussinesq-
like equations. Sine-cosine method has been used to achieve explicit soliton solutions of these equations 
that emerged in coastal and ocean engineering. The obtained solutions have been studied in the form of 
hyperbolic and trigonometric functions. The behavior of some of the soliton solutions are demonstrated 
via 2D and 3D graphs. As a result of the fractional effects, physical changes are observed. The obtained 
results show that the proposed method is more convenient, powerful and efficient than other analytical 
approaches. The extracted results might improve our understanding of how waves propagate and could 
be beneficial to coastal and ocean engineering as well as other fields.  

Keywords: Sine-cosine method; The Boussinesq- like equations; Time beta fractional derivative; the exact 
solutions.

 

1. INTRODUCTION 

Mostly natural phenomena occurring in the 

universe are interpreted by nonlinear differential 
equations of integer order as well as non-integer 

order. Nonlinear fractional differential equations 
(NFDEs) respond promptly and effectively in a 

variety scientific and engineering fields, 

including dynamical systems, electromagnetic, 
technology, fusion plasma, viscoelastic, biology, 

signal processing, electrochemical, optical fiber, 
oceanography, solid state physics, geochemistry, 

finance, among others. Many intriguing aspects 

of fractional calculus and flexibility of fractional 
theory have captivated the attention of many 

researchers (Sadiya et al. 2022; Khantun et al., 
2022). 

Fractional derivatives are defined in several 

ways, including conformable derivatives (Khalil 
et al., 2014), Atangana-Baleanu derivatives 

(Atangana and Baleanu, 2016), beta derivatives 
(Yepez-Martinez et al., 2018; Atangana et al., 

2016), M-truncated derivative (Sousa et al., 

2018), and Modified RL fractional derivatives 

(Jumarie, 2009). A fractional derivative can have a 
variety of properties, so that it is possible to use the 

one that is most suitable for the problem at hand. In 

fact, the study of fractional derivative operators is a 
popular topic. A lot of research has been done in this 

area, leading to an excessive number of findings e.g. 
see in (Ghanbari and Baleanu, 2020; Khater and 

Ghanbari, 2021; Ghanbari, 2019; Ghanbari et al., 

2019). 
The areas that focus on the examination of wave 

patterns in the physical world are fascinating since 
they address an extremely scientific and developed 

idea of soliton waves. The soliton wave is an important 

nonlinear phenomenon. Solitons offer an intriguing 
perspective on nonlinear physical processes. Finding 

solitons of nonlinear phenomena has recently gained 
popularity among mathematicians and scientists. The 

primary advantage of soliton solutions is the fact that 

they can be used for evaluation equations with various 
kind of nonlinearities that are both integrable and non-

integrable. The exact soliton solutions of fractional 
differential equations (FDEs) has been crucial in many 

kinds of physical science research. Consequently, 
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several approaches have been devised for 

computing FDEs solutions. Among them are: the 
extended tanh-function method (Zaman et al., 

2022a, b), generalized (
𝐺′

𝐺
)-expansion method 

(Uddin et al., 2022), modified F- expansion 

method (Ahmad et al., 2023), Sardar sub 
equation method (Ali et al., 2023), improved F-

expansion method (Akram et al., 2023) extended 

simple equation method (Ahmad et al., 2023), 
unified method (Ali et al., 2023) and so on. 

In this paper, we utilize the Sine-cosine technique 
introduced by Wazwaz (2004) to derive a set of 

new exact solutions for four distinct types of time 

beta fractional Boussinesq-like equations. For 
further context, relevant works include those by 

(Wazwaz, 2012), Elsami et al. (2014), Darvishi 
et al. (2017), Darvishi et al. (2018) and Osman 

(2019), each contributing to the understanding 

and development of this approach. The equations 
under consideration are expressed in the 

following forms: 

𝐷𝑡𝑡
2𝛽
𝑢 − 𝑢𝑥𝑥 − (6𝑢

2𝑢𝑥 + 𝑢𝑥𝑥𝑥)𝑥 = 0,                                                                                          
(1)  

𝐷𝑡𝑡
2𝛽
𝑢 − 𝑢𝑥𝑥 − (6𝑢

2𝑢𝑥 + 𝐷𝑡𝑡
2𝛽
𝑢𝑥)𝑥 = 0,                                                                                      

(2) 

𝐷𝑡𝑡
2𝛽
𝑢 − 𝐷𝑡

𝛽
𝑢𝑥− (6𝑢

2𝑢𝑥 +𝐷𝑡
𝛽
𝑢𝑥𝑥)𝑥 = 0,                                                                                   

(3) 

𝐷𝑡𝑡
2𝛽
𝑢 − (6𝑢2𝑢𝑥+ 𝑢𝑥𝑥𝑥)𝑥 = 0.                                                                                                     

(4) 

Where 𝐷𝑡
𝛽
𝑢 is the time  𝛽 − fractional 

derivative of 𝑢 (Atangana’s comformable) order 

0 < 𝛽 < 1 in time 𝑡 > 0, 𝑢𝑥 =
𝜕𝑢

𝜕𝑥
, 𝑎𝑛𝑑  𝑢𝑥𝑥 =

𝜕2𝑢

𝜕𝑥2
. 

Eq. (1) includes the fourth spatial derivative 

𝑢𝑥𝑥𝑥𝑥and the dissipative term𝑢𝑥𝑥. In Eq. (2), 

𝑢𝑥𝑥𝑥𝑥 is replaced by a mixed spatial-temporal 

term.𝐷𝑡𝑡
2𝛽
𝑢𝑥𝑥. In Eq. (3), 𝑢𝑥𝑥 is replaced 

by𝐷𝑡
𝛽
𝑢𝑥 and 𝑢𝑥𝑥𝑥𝑥 is replaced by a spatial-

temporal term𝐷𝑡
𝛽
𝑢𝑥𝑥. Lastly, Eq. (4) lacks the 

dissipative term  𝑢𝑥𝑥 . 
These equations (1)-(4) are non-integrable and 

are used as models in ocean and coastal sciences 

when  𝛽 = 1. Some of these equations are 
employed in wave modeling and mathematical 
modeling of tidal oscillations.  

This paper is structured as follows: A brief definition 

and properties of beta fractional derivative are given 
in section 2. Section 3 provides a detailed explanation 

of the Sine-cosine method. Section 4 discusses the 
application of the Sine-cosine method to the time 

𝛽 −fractional Boussinesq-like equations represented 
by equations (1)-(4) respectively. Section 5 offers a 

physical interpretation of some of the solutions 
obtained. Finally, Section 6 summarizes the main 

conclusions drawn from the study. 

2. PROPERTIES OF BETA DERIVATIVE 

Some properties of the Beta derivative are given 

using the following definition and theorem: 
Definition (2.1), (Atangana et al., 2016):  

𝐷𝑡
𝛽
(𝑢(𝑡))

= lim
𝜀→0

𝑢 (𝑡 + 𝜀 (𝑡 +
1
Γ(𝛽)

)
1−𝛽

)− 𝑢(𝑡)

𝜀
, 

,   
Where   Γ(𝛽) = ∫ 𝑡𝛽−1𝑒−𝑡𝑑𝑡,    0 < 𝛽 < 1.

∞

0
 

and 
 

𝐷𝑡
𝛽(𝑢(𝑡)) =

𝑑𝛽𝑢(𝑡)

𝑑𝑡𝛽
. 

. 

Theorem: (2.1 ) Let 𝑢(𝑡) and 𝑣(𝑡) be 𝛽 −
 differentiable functions, for all 𝛽 ∈ (0,1) and 𝑡 > 0. 
Then  

(a) 𝐷𝑡
𝛽
(𝑎𝑢(𝑡) + 𝑏𝑣(𝑡)) = 𝑎𝐷𝑡

𝛽
𝑢(𝑡) +

𝑏𝐷𝑡
𝛽
𝑣(𝑡), ∀ 𝑎, 𝑏 ∈ ℝ ,  

                   (b)𝐷𝑡
𝛽
(𝑢(𝑡). 𝑣(𝑡)) =

𝑢(𝑡)𝐷𝑡
𝛽
(𝑣(𝑡)) + 𝑣(𝑡)𝐷𝑡

𝛽
(𝑢(𝑡)),  

(c) 𝐷𝑡
𝛽
(
𝑢(𝑡)

𝑣(𝑡)
) =

𝑣(𝑡)𝐷𝑡
𝛽
(𝑢(𝑡))−𝑢(𝑡)𝐷𝑡

𝛽
(𝑣(𝑡))

𝑣(𝑡)2
,

  

(d) 𝐷𝑡
𝛽(𝑘) = 0, where 𝑘 ∈

ℝ,

  

(e) 𝐷𝑡
𝛽
(𝑢(𝑡) = (𝑡 +

1

Γ(𝛽)
)
1−𝛽 𝑑𝑢(𝑡)

𝑑𝑡
 . 
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Relevant works on this context of beta 

fractional derivative see (Yusuf, et al., 

2019; Yiasir Arafat, et al., 2023; Fiza et al., 

2024). 

 

 
 
 

 

3. METHODOLOGY 

In this section, we give a description of the sine-

cosine method which is used to obtain exact 
solutions of partial differential equations. 

3.1 The Sine-Cosine Method 

Consider a nonlinear partial differential equation 

𝑃(𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥 , 𝑢𝑥𝑡, 𝑢𝑡𝑡 , ⋯ 𝐷𝑡
𝛽
𝑢, 𝐷𝑥

𝛽
𝑢, 𝐷𝑡𝑡

2𝛽
𝑢,

𝐷𝑥𝑥
2𝛽
𝑢, … ) = 0, 0 < 𝛽 < 1.                                 

(5)                                                

Which describes the dynamical wave solution 

𝑢(𝑥, 𝑡). The steps of the sine-cosine method has 
been proposed in (Wazwaz, 2004) as follows: 
Step 1: To find the travelling wave solution of 

equation (5), we introduce 

  𝑢(𝑥, 𝑡) = 𝑈(𝑧),and𝑧 = 𝜛𝑥 −
𝜔

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

.                                                                          

(6) 

Step 2: we use the following changes 
𝜕

𝜕𝑡
= −𝜔

𝑑

𝑑𝑧
,
𝜕2

𝜕𝑡2
= 𝜔2

𝑑2

𝑑𝑧2
, ⋯ ,

𝜕

𝜕𝑥
= 𝜛

𝑑

𝑑𝑧
,

𝜕2

𝜕𝑥2
= 𝜛2 𝑑2

𝑑𝑧2
….                                                  

(7) 

Now, utilizing Eq. (7) transforms the partial 
differential equation Eq. (5) into an ordinary 

differential equation: 

𝑄(𝑈, 𝑈′, 𝑈′′ , … ) = 0,                                                                                                                    
(8) 

Where 𝑈′ denotes 
𝑑𝑢

𝑑𝑧
.  

Step 3: Simplify Eq. (8) by integration if 

possible 

Step 4: The solution will be expressed in the 
following form: 

𝑢(𝑥, 𝑡) = 𝜆𝑠𝑖𝑛𝜇(𝜗 𝑧),                |𝑧| ≤
𝜋

𝜗
,                                                                                       

(9) 
or in the form  

𝑢(𝑥, 𝑡) = 𝜆𝑐𝑜𝑠𝜇(𝜗 𝑧), |𝑧| ≤
𝜋

2𝜗
,                                                                                  

(10) 

Where 𝜆, 𝜗, 𝑎𝑛𝑑 𝜇 are parameters to be 
determined. 

Step 5: Hence, the derivatives of Eq. (9) take the 

following form: 

 𝑈(𝑧) = 𝜆𝑠𝑖𝑛𝜇(𝜗 𝑧),                                                                                                                   
(11) 

𝑈𝑛(𝑧) = 𝜆𝑛𝑠𝑖𝑛𝑛𝜇(𝜗 𝑧),                                                                                                            
(12) 

𝑈𝑧
𝑛(𝑧) = 𝑛𝜇𝜗𝜆𝑛 cos(𝜗 𝑧) 𝑠𝑖𝑛𝑛𝜇−1(𝜗 𝑧),                                                                                   

(13) 

𝑈𝑧𝑧
𝑛 (𝑧) = −𝑛2𝜗2𝜇2𝜆2𝑠𝑖𝑛𝑛𝜇(𝜗 𝑧) + 𝑛𝜗2𝜆2𝜇(𝑛𝜇 −
1)𝑠𝑖𝑛𝑛𝜇−2(𝜗 𝑧).                                     (14) 

And the derivative of Eq. (10) becomes 

𝑈(𝑧) = 𝜆𝑐𝑜𝑠𝜇(𝜗 𝑧),                                                                                                                  
(15) 

𝑈𝑛(𝑧) = 𝜆𝑛𝑐𝑜𝑠𝑛𝜇(𝜗 𝑧),                                                                                                             
(16) 

𝑈𝑧𝑧
𝑛 (𝑧) = −𝑛2𝜗2𝜇2𝜆2𝑐𝑜𝑠𝑛𝜇−1(𝜗 𝑧) + 𝑛𝜗2𝜆2𝜇(𝜇 −
1)𝑐𝑜𝑠𝑛𝜇−2(𝜗 𝑧).                                      (17) 

And so on for further derivatives. 

We substitute Eq. (10) to (17) into the previously 

obtained reduced equation Eq. (8), balancing the 
terms of the cosine functions when Eq. (10) is 

used, or balancing the sine functions when Eq. 
(9) is used. Finally, we solve the resulting system 

of algebraic equations with the assistance of 
computerized symbolic computation to 
determine all possible values of the parameters 

𝝀,𝝑, 𝒂𝒏𝒅 𝝁. 
 

4. APPLICATION  

In this section, we utilize the sine-cosine method to 
derive exact solutions for four distinct β-time 

fractional Boussinesq-like equations. 

4.1 The First 𝑻ⅈ𝒎𝒆𝜷 − Fractional Boussinesq -

like Equation 

We consider The First Time β-Fractional Boussinesq-
like Equation given by 

𝐷𝑡𝑡
2𝛽
𝑢 − 𝑢𝑥𝑥 − (6𝑢

2𝑢𝑥 + 𝑢𝑥𝑥𝑥)𝑥 = 0.                                                                                        
(18) 

By applying the following wave transformation: 

𝑢(𝑥, 𝑡) = 𝑢(𝑧),   

Where 𝑧 = 𝜛𝑥 −
𝜔

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

,                                                                                                 

(19)                                                               

Equation (18) reduces to ordinary differential 
equation: 
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𝜔2𝑢′′ −𝜛2𝑢′′−𝜛(6𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥)
′ = 0, 

(𝜔2 −𝜛2)𝑢′′(𝑧)− 𝜛(6𝜛𝑢2(𝑧)𝑢′(𝑧) +
𝜛3𝑢′′′(𝑧))′ = 0,                                                        
(20) 

Integrate once 

(𝜔2 −𝜛2)𝑢′(𝑧)− 𝜛(6𝜛𝑢2(𝑧)𝑢′(𝑧) +
𝜛3𝑢′′′(𝑧)) = 0,                                                          
(21) 

Integrate again 

(𝜔2 −𝜛2)𝑢(𝑧) − 𝜛(6𝜛.
𝑢3

3
+ 𝜛3𝑢′′(𝑧))

= 0, 
(𝜔2 −𝜛2)𝑢(𝑧) − 2𝜛2𝑢3(𝑧) − 𝜛4𝑢′′(𝑧) = 0.                                                                         
(22) 

Eq. (22) is the reduced ordinary differential 
equation. 

Assume that Eq. (22) has a solution in the form 

of 

𝑢(𝑧) = 𝜆 𝑠𝑖𝑛𝜇(𝜗 𝑧),                                                                                                                    
(23) 

𝑢′(𝑧) = 𝜇 𝜆 𝜗 cos(𝜗 𝑧) . 𝑠𝑖𝑛𝜇−1(𝜗 𝑧),                                                                                        
(24) 

𝑢′′(𝑧) = 𝜆 𝜇 𝜗 (−𝜗 𝜇𝑠𝑖𝑛𝜇(𝜗 𝑧)

+ 𝜗 (𝜇 − 1)𝑠𝑖𝑛𝜇−2(𝜗 𝑧), 
= −𝜆 𝜇2𝜗2 𝑠𝑖𝑛𝜇(𝜗 𝑧) + 𝜆 𝜇 𝜗2(𝜇 −
1)𝑠𝑖𝑛𝜇−2(𝜗 𝑧).                                                        
(25) 

For the cosine we have 

𝑢(𝑧) = 𝜆 𝑐𝑜𝑠𝜇(𝜗 𝑧),                                                                                                                   
(26) 

𝑢′(𝑧) = 𝜆 𝜇 𝑐𝑜𝑠𝜇−1(𝜗 𝑧). −𝜗 𝑠𝑖𝑛𝜇(𝜗 𝑧),                                                                                   
(27) 

= −𝜆 𝜇 𝜗𝑐𝑜𝑠𝜇−1(𝜗 𝑧)𝑠𝑖𝑛𝜇(𝜗 𝑧), 
𝑢′′(𝑧) = −𝜆 𝜇2𝜗2𝑐𝑜𝑠𝜇(𝜗 𝑧) + 𝜆 𝜗2𝜇 (𝜇 −
1)𝑐𝑜𝑠𝜇−2(𝜗 𝑧).                                                    
(28) 

Substitute Eq. (23) and Eq. (25) in equation Eq. 
(22), we have 

(𝜔2 − 𝜛2) 𝜆 𝑠𝑖𝑛𝜇(𝜗 𝑧) − 2 𝜛2𝜆3𝑠𝑖𝑛3𝜇(𝜗 𝑧)
− 𝜛4{−𝜆 𝜇2𝜗2𝑠𝑖𝑛𝜇(𝜗 𝑧) 

+𝜆 𝜇 𝜗2(𝜇 − 1)𝑠𝑖𝑛𝜇−2(𝜗 𝑧)} = 0,                                                               
(29)                                                                                           

(𝜔2 − 𝜛2) 𝜆 𝑠𝑖𝑛𝜇(𝜗 𝑧) − 2 𝜛2𝜆3𝑠𝑖𝑛3𝜇(𝜗 𝑧)
+ 𝜛4𝜆 𝜇2𝜗2𝑠𝑖𝑛𝜇(𝜗 𝑧) 

−𝜛4𝜆 𝜇 𝜗2(𝜇 − 1) 𝑠𝑖𝑛𝜇−2(𝜗 𝑧) = 0.                                                         
(30)                                                                                              

Eq. (30) is fulfilled if the following system of 
algebraic equations is satisfied: 

𝜇 − 1 ≠ 0, 
3 𝜇 = 𝜇 − 2, 

−2 𝜛2𝜆3 −𝜛4𝜆 𝜇 𝜗2(𝜇 − 1) = 0, 
(𝜔2 −𝜛2) 𝜆 + 𝜛4𝜆 𝜇2 𝜗2 = 0. 
Solving the system using Maple, we obtained 

𝜇 = −1, 𝜆 = ±
√𝜛2−𝜔2

𝜛
, 𝜗 = ±

√𝜛2−𝜔2

𝜛2
.                                                                                    

(31) 
Using the cosine method given by Eq. (26) will yield 

the same results. 
Given Eq. (31), the solutions obtained from Eq. (23) 

and Eq. (19) are as follows:  

𝑢11(𝑥, 𝑡) =
√𝜛2−𝜔2

𝜛
csc [

√𝜛2−𝜔2

𝜛2
(𝜛 𝑥 +

𝜔

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

)].                                                          (32) 

And for cosine function, we have 

𝑢12(𝑥, 𝑡) =
√𝜛2−𝜔2

𝜛
sec [

√𝜛2−𝜔2

𝜛2
(𝜛 𝑥 +

𝜔

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

)].                                                         (33) 

Eq. (32) and Eq. (33) are valid only if  𝜛2− 𝜔2 > 0,

𝑠𝑜 𝑡ℎ𝑎𝑡  𝜔2 < 𝜛2,    𝑖 = √−1. 

However, for 𝜔2 > 𝜛2 we obtain the following 
solutions 

𝑢13(𝑥, 𝑡) = −
√𝜛2−𝜔2

𝜛
csch[

√𝜔2−𝜛2

𝜛2
(𝜛 𝑥 +

𝜔

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

)],                                                    (34) 

𝑢14(𝑥, 𝑡) =
√𝜛2−𝜔2

𝜛
sech [

√𝜔2−𝜛2

𝜛2
(𝜛 𝑥 +

𝜔

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

)].                                                       (35) 
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FIGURE 1. The graphical illustration for beta fractional derivative of solution |𝑢11(𝑥, 𝑡)| with 𝜛 = 2,𝜔 =
1, 𝑡 = 1.5, 𝜇 = 1.(a) 𝛽 = 0.5, (𝒃)𝛽 = 0.75, (𝒄)𝛽 = 0.95, (𝒅)Combined 2Dgraph for distinct values 

of 𝛽. 
 

4.2 The Second Time β-Fractional 

Boussinesq-like Equation 
In this section, we investigate the second β-time 

fractional Boussinesq-like equation: 

𝐷𝑡𝑡
2𝛽
𝑢 − 𝑢𝑥𝑥 − (6𝑢

2𝑢𝑥 + 𝐷𝑡𝑡
2𝛽
𝑢𝑥)𝑥 = 0.                                                                                    

(36) 

We use the wave transformation 

𝑢(𝑥, 𝑡) = 𝑢(𝑧),   

𝑧 = 𝜛𝑥 +
𝜔

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

.                                                                                                             

(37) 

Eq. (35) reduces to  

𝜔2𝑢′′ −𝜛2𝑢′′−𝜛(6𝑢2𝑢𝑥 + 𝑢𝑥𝑡𝑡)
′ = 0,                                                                                  

(38) 

(𝜔2 −𝜛2)𝑢′′(𝑧)− 𝜛(6𝜛𝑢2(𝑧)𝑢′(𝑧) +
𝜛𝜔2𝑢′′′(𝑧))′ = 0,                                                     
(39) 

Integrating Eq. (38) with respect to 𝑧 once, we 
have 

(𝜔2 −𝜛2)𝑢′(𝑧)− 𝜛(6𝜛𝑢2(𝑧)𝑢′(𝑧) +
𝜛𝜔2𝑢′′′(𝑧)) = 0, 
(𝜔2 −𝜛2)𝑢′(𝑧)− 6𝜛2𝑢2(𝑧)𝑢′(𝑧) −
𝜛2𝜔2𝑢′′′(𝑧) = 0,                                                          
(40) 

Integrating Eq. (40) with respect to 𝑧 again, we 
obtain 

(𝜔2 −𝜛2)𝑢(𝑧) − 2𝜛2𝑢3(𝑧) − 𝜛2𝜔2𝑢′′(𝑧) =
0.                                                                     
(41) 

Now, Eq. (41) is the reduced ordinary 

differential equation.                                                                                               

Substituting Eq. (23) and Eq. (25) into Eq. (41) gives 

(𝜔2 − 𝜛2) 𝜆 𝑠𝑖𝑛𝜇(𝜗 𝑧) − 2 𝜛2𝜆3𝑠𝑖𝑛3𝜇(𝜗 𝑧)
− 𝜛2𝜔2{−𝜆 𝜇2𝜗2𝑠𝑖𝑛𝜇(𝜗 𝑧) 

+𝜆 𝜇 𝜗2(𝜇 − 1)𝑠𝑖𝑛𝜇−2(𝜗 𝑧)} = 0,                                                               
(42) 

(𝜔2 − 𝜛2) 𝜆 𝑠𝑖𝑛𝜇(𝜗 𝑧) − 2 𝜛2𝜆3𝑠𝑖𝑛3𝜇(𝜗 𝑧)
+ 𝜛2𝜔2 𝜆 𝜇2𝜗2𝑠𝑖𝑛𝜇(𝜗 𝑧) 

−𝜛2𝜔2𝜆 𝜇 𝜗2(𝜇 − 1)𝑠𝑖𝑛𝜇−2(𝜗 𝑧) = 0.                                                       
(43) 

Eq. (43) holds true if the following system of 
algebraic equations is satisfied:                                                       

𝜇 − 1 ≠ 0, 
3𝜇 = 𝜇 − 2, 
 

−2 𝜛2𝜆3 = −𝜛2𝜔2𝜆 𝜇 𝜗2(𝜇 − 1), 
(𝜔2 −𝜛2) = 𝜛2𝜔2 𝜆 𝜇2𝜗2.                                                                                                     
(44) 
 

Solving system Eq. (44), we obtain 

𝜇 = −1, 𝜆 = ±
√𝜔2 −𝜛2

𝜛
,

𝜗 = ±
√𝜛2− 𝜔2

𝜛𝜔
, 

Similar results are also achieved when employing the 

cosine function. 

As a result, the following solutions were derived: 
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𝑢21(𝑧) =
√𝜔2−𝜛2

𝜛
csc [

√𝜛2−𝜔2

𝜛 𝜔
(𝜛 𝑥 +

𝜔

𝛽
(𝑡 +

1

𝛤(𝛽)
)
𝛽

)] , 𝜔2 < 𝜛2,                                      (45) 

𝑢22(𝑧) =
√𝜔2−𝜛2

𝜛
sec [

√𝜛2−𝜔2

𝜛 𝜔
(𝜛 𝑥 +

𝜔

𝛽
(𝑡 +

1

𝛤(𝛽)
)
𝛽

)],       𝜔2 < 𝜛2.                                      

(46) 

For 𝜔2 > 𝜛2 we also obtained the following 
solutions: 

𝑢23(𝑧) = −𝑖
√𝜔2−𝜛2

𝜛
csch [

√𝜔2−𝜛2

𝜛 𝜔
(𝜛 𝑥 +

𝜔

𝛽
(𝑡 +

1

𝛤(𝛽)
)
𝛽

)] ,                                                     

(47) 

𝑢24(𝑧) =
√𝜔2−𝜛2

𝜛
sech [

√𝜔2−𝜛2

𝜛 𝜔
(𝜛 𝑥 +

𝜔

𝛽
(𝑡 +

1

𝛤(𝛽)
)
𝛽

)].                                                          (48) 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 

FIGURE 2. The graphical illustration for beta fractional derivative of solution |𝑢21(𝑥, 𝑡)| 

with 𝜛 = 2,𝜔 = −3, 𝑡 = 1.5, 𝜇 = −1.(a) 𝛽 = 0.5, (𝒃)𝛽 = 0.75, (𝒄)𝛽 =
0.95, (𝒅)Combined 2Dgraph for distinct values of 𝛽. 
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4.3 The Third 𝑻ime 𝜷 −Fractional 

Boussinesq -like Equation 
In this section we study the third time beta-

fractional Boussinesq- like equation: 

𝐷𝑡𝑡
2𝛽
𝑢 − 𝑢𝑥𝑡

𝛽
− (6𝑢2𝑢𝑥 +𝐷𝑡

𝛽
𝑢𝑥𝑥)𝑥 = 0.                                                                                     

(49) 

Using the travelling wave transformation: 

    𝑢(𝑥, 𝑡) = 𝑢(𝑧),   

𝑧 = 𝜛𝑥 −
𝜔

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

. 

Substituting these in Eq. (49) gives 

(𝜔2 +𝜛𝜔)𝑢′′(𝑧) − 𝜛(6𝑢2(𝑧)𝑢′(𝑧) −

𝜛2𝜔𝑢′′′(𝑧))
′
= 0,                                                      

(50) 

Integrating twice and setting the constants of 

integration to zero, we obtain: 
(𝜔2 +𝜛𝜔)𝑢(𝑧) − 2𝜛2𝑢3(𝑧)+ 𝜛3𝜔𝑢′′(𝑧) =
0.                                                                     
(51) 
Assuming that Eq. (51) has a solution in the 

form: 

𝑢(𝑧) = 𝜆 sin𝜇(𝜗 𝑧), 
Where 𝜔 and 𝜛 are constants, substituting Eq. 
(23) and Eq. (25) into Eq. (51) yields: 

 (𝜔2 + 𝜛𝜔)𝜆 sin𝜇(𝜗 𝑧) − 2𝜛2(𝜆 sin𝜇(𝜗 𝑧))3 +

𝜛3𝜔(−𝜆 𝜇2𝜗2 𝑠𝑖𝑛𝜇(𝜗 𝑧) + 𝜆 𝜇 𝜗2(𝜇 −

1)𝑠𝑖𝑛𝜇−2(𝜗 𝑧)) = 0,                                                                                                                  
(52)                

(𝜔2 +𝜛𝜔)𝜆 sin𝜇(𝜗 𝑧) − 2𝜛2𝜆3 sin3𝜇(𝜗 𝑧) −

𝜛3𝜔𝜆𝜇2𝜗2 sin𝜇(𝜗 𝑧) + 𝜛3𝜔𝜆𝜇𝜗2(𝜇 −
1) sin𝜇−2(𝜗 𝑧) = 0.                                                                                                                     
(53) 
By equating the exponents and coefficients of each 

pair of sine functions to zero, we derive the following 

system of algebraic equations: 

𝜇 − 1 ≠ 0, 
3𝜇 = 𝜇 − 2, 

(𝜔2 +𝜛𝜔)𝜆 −𝜛3𝜔𝜆𝜇2𝜗2 = 0,                                                                                                
(54) 

−2𝜛2𝜆3 +𝜛3𝜔𝜆𝜇𝜗2(𝜇 − 1) = 0. 
Solving the system Eq. (54) yields 

𝜇 = −1, 𝜆 = ±
√𝜔2+𝜔𝜛

𝜛
, 𝜗 = ±

√𝜛(𝜔+𝜛)

𝜛2
.                                                                                

(55) 

Consequently, for 𝜛𝜔 + 𝜛2 > 0, we obtained the 

following solutions 

𝑢31(𝑧) =
√𝜔2+𝜔𝜛

𝜛
csc [

√𝜛(𝜔+𝜛)

𝜛2
(𝜛 𝑥 −

𝜔

𝛽
(𝑡 +

1

𝛤(𝛽)
)
𝛽

)] ,                                                         (56) 

and 

𝑢32(𝑧) =
√𝜔2+𝜔𝜛

𝜛
sec [

√𝜛(𝜔+𝜛)

𝜛2
(𝜛 𝑥 −

𝜔

𝛽
(𝑡 +

1

𝛤(𝛽)
)
𝛽

)] .                                                         (57) 

However, for 𝜛𝜔 + 𝜛2 < 0, gives the following 
solutions 

𝑢33(𝑧) = −𝑖
√−𝜔2−𝜔𝜛

𝜛
csch [

√−𝜛(𝜔+𝜛)

𝜛2
(𝜛 𝑥 −

𝜔

𝛽
(𝑡 +

1

𝛤(𝛽)
)
𝛽

)] ,                                              (58) 

and 

𝑢34(𝑧) =
√−𝜔2−𝜔𝜛

𝜛
sech [

√−𝜛(𝜔+𝜛)

𝜛2
(𝜛 𝑥 −

𝜔

𝛽
(𝑡 +

1

𝛤(𝛽)
)
𝛽

)] .                                                   (59) 
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4.4 The Fourth Time 𝜷 −Fractional 

Boussinesq- like Equation 
In this section we study the fourth time beta-
fractional Boussinesq like equation: 

𝐷𝑡𝑡
2𝛽
𝑢 − (6𝑢2𝑢𝑥+ 𝑢𝑥𝑥𝑥

𝛽
)𝑥 = 0.                                                                                                   

(60) 

Using the travelling wave transformation: 

    𝑢(𝑥, 𝑡) = 𝑢(𝑧),   

𝑧 = 𝜛𝑥 −
𝜔

𝛽
(𝑡 +

1

Γ(𝛽)
)
𝛽

. 

Substituting these in Eq. (60) becomes 

𝜔2𝑢′′(𝑧) − 𝜛(6𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥)
′ = 0,                                                                                          

(61) 

 

𝜔2𝑢′′(𝑧) − 𝜛(6𝑢2𝜛𝑢′(𝑧)+ 𝜛3𝑢′′′(𝑧)′ = 0,                                                                            
(62) 
Integrating Eq. (62) once, we have 

𝜔2𝑢′(𝑧)− 𝜛(6𝜛𝑢2(𝑧)𝑢′(𝑧)+ 𝜛3𝑢′′′(𝑧) = 0,                                                                        
(63) 

 

𝜔2𝑢′(𝑧)− 6𝜛2𝑢2(𝑧)𝑢′(𝑧)− 𝜛4𝑢′′′(𝑧) = 0,                                                                           
(64) 

Integrating Eq. (64) again gives 

𝜔2𝑢(𝑧) − 2𝜛2𝑢3(𝑧) − 𝜛4𝑢′′(𝑧) = 0.                                                                                      
(65) 

Where 𝜛 𝑎𝑛𝑑 𝜔 are constants. Substituting Eq. (23) 

and Eq. (25) into Eq. (65) gives 

𝜔2𝜆 sin𝜇(𝜗 𝑧) − 2𝜛2𝜆3 sin3𝜇(𝜗 𝑧) −
𝜛4(−𝜆 𝜇2𝜗2 sin𝜇(𝜗 𝑧) + 𝜆 𝜇 𝜗2(𝜇 −

1)𝑠𝑖𝑛𝜇−2(𝜗 𝑧)) = 0,                                                                                                                                                  
(66) 

𝜔2𝜆 sin𝜇(𝜗 𝑧) − 2𝜛2𝜆3 sin3𝜇(𝜗 𝑧)
+ 𝜛4𝜆 𝜇2𝜗2 sin𝜇 𝜗 𝑧)
− 𝜛4𝜆𝜇𝜗2(𝜇 − 1) sin𝜇−2(𝜗 𝑧) = 0. 

                                                                                                                                                     

(67) 

By setting the exponents and coefficients of each pair 
of sine functions to zero, we derive the following 

system of algebraic equations: 

 
 

 
 

 
FIGURE 3. The graphical illustration for beta fractional derivative of solution |𝑢31(𝑥, 𝑡)| with 𝜛 = 2,𝜔 = 1, 𝑡 = 1.5,

𝜇 = −1.(a) 𝛽 = 0.5, (𝒃)𝛽 = 0.75, (𝒄)𝛽 = 0.95, (𝒅)Combined 2D graph for distinct values of 𝛽. 
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𝜇 − 1 ≠ 0, 
3𝜇 = 𝜇 − 2, 

𝜔2𝜆 +𝜛4𝜆 𝜇2𝜗2 = 0,                                                                                                             
(68) 

−2𝜛2𝜆3 −𝜛4𝜆𝜇𝜗2(𝜇 − 1) = 0. 
Upon solving the system of equations Eq. (68), 

we obtain: 

𝜇 = −1,    𝜆 = ±
𝜔

𝜛
,    𝜗 = ±

𝜔𝑖

𝜛2
.                                                                                                

(69) 

Consequently, we obtained the following 
solutions 

𝑢41(𝑧) =
𝜔

𝜛
csc [

𝜔𝑖

𝜛2
(𝜛𝑥 −

𝜔

𝛽
(𝑡 +

1

𝛤(𝛽)
)
𝛽

)] ,                                                                              

(70) 
and 

𝑢42 =
𝜔

𝜛
sec [

𝜔𝑖

𝜛2
(𝜛𝑥 −

𝜔

𝛽
(𝑡 +

1

Γ(𝛽)
))  ].                                                                                     

(71) 

 

5 PHYSICAL EXPLANATION 

In this section, we generated various types of exact 

solutions for Equations (1)-(4) using the Sine-cosine 
approach. These solutions are in the form of 

trigonometric and hyperbolic functions. 

 Fig 1. (a)-(c) Depicts modulus of solutions for 

|𝑢11(𝑥, 𝑡)|, Eq. (32) with various parameter values, 

𝜛 = 2, 𝜔 = 1, 𝜇 = −1, 𝜆 =
√3

2
, 𝜗 =

√6

4
, as well as 

the beta  fractional order values, 𝛽 = 0.5 𝑓𝑜𝑟 (𝑎),
𝛽 = 0.75 𝑓𝑜𝑟 (𝑏)  𝑎𝑛𝑑 𝛽 = 0.95 𝑓𝑜𝑟 (𝑐). We 
observed multiple solitons with varying heights and 
positions. (d) Shows the effect of beta fractional order 

values in combined 2D wave profile with  𝛽 = 0.5,
0.75, 0.95  𝑎𝑛𝑑 𝑡 = 1.5. We observed the wave 
propagates in the x-direction for increasing values of 

  

  
FIGURE 4. The graphical illustration for beta fractional derivative of solution |𝑢41(𝑥, 𝑡)| with 𝜛 = 5,𝜔 =
3, 𝑡 = 1.5, 𝜇 = −1.(a) 𝛽 = 0.5, (𝒃)𝛽 = 0.75, (𝒄)𝛽 = 0.95, (𝒅)Combined 2D graph for distinct 

values of 𝛽. 
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𝛽.  For specific values of the parametres 𝜛 = 2,

𝜔 = −3, 𝜇 = −1, 𝜆 =
√5

2
,   𝜗 = −

√5

6
𝐼, the 3D 

wave profile of the solution |𝑢2,1(𝑥, 𝑡)| which 

depicts  periodic solitary wave corresponding to 

Fig 2.(a)-(c) with different beta values 𝛽 =
0.5 𝑓𝑜𝑟 (𝑎), 𝛽 = 0.75 𝑓𝑜𝑟 (𝑏)  𝑎𝑛𝑑 𝛽 =
0.95 𝑓𝑜𝑟 (𝑐).. Moreover, the combined 2D graph 
is shown in Fig. 2(d) with distinct beta values, 

𝛽 = 0.5, 0.75, 0.95 𝑎𝑛𝑑 𝑡 = 1.5. 
Fig. 3(a)-(c) represents the periodic wave 
structure of the solution |𝑢3,1(𝑥, 𝑡)| for the 

parameter values = 2, 𝜔 = 1, 𝜇 = −1, 𝜆 =
√3

2
,   𝜗 =

√6

4
 , with  𝛽 = 0.5 𝑓𝑜𝑟 (𝑎), 𝛽 =

0.75 𝑓𝑜𝑟 (𝑏)  𝑎𝑛𝑑 𝛽 = 0.95 𝑓𝑜𝑟 (𝑐)and the 2D 

graph is plotted in Fig. 3(d) with beta values 𝛽 =
0.5, 0.75, 0.95 𝑎𝑛𝑑 𝑡 = 1.5, which shows the 
effect of beta fractional order. Fig. 4(a)-(c) 

illustrates the 3D wave structure of the solution 
|𝑢4,1(𝑥, 𝑡)| representing singular soliton solution 

with parameter values 𝜛 = 5, 𝜔 = 3, 𝜇 = −1,

𝜆 =
3

5
, 𝜗 = 3/25, and for specific values of the 

beta: 𝛽 = 0.5 𝑓𝑜𝑟 (𝑎), 𝛽 =
0.75 𝑓𝑜𝑟 (𝑏)  𝑎𝑛𝑑 𝛽 = 0.95 𝑓𝑜𝑟 (𝑐).  The 2D 
combined wave profiles are shown in Fig. 4(d) 

for 𝛽 = 0.5, 0.75, 0.95 𝑎𝑛𝑑 𝑡 = 1.5 to show 
the effect of beta fractional order. From the above 

discussion, it is obvious that the sine-cosine 
approach can provide different types of wave 

structures to fractional Boussinesq-like equations 
with beta derivative for various values of 

parameters.  

The obtained solutions derived through this 
method play a crucial role in understanding the 

structure and dynamic behavior of the problem 
at hand. The method proposed in this work is 

straightforward, dependable, and effective, with 

the potential to be extended for studying and 
solving numerous other nonlinear evolution 

equations across various scientific and 
engineering disciplines. 

 

CONCLUSION 
In this paper, we employed the sine-cosine 

method to obtain travelling wave solutions for 
four distinct Beta fractional Boussinesq-like 

equations. The obtained results include singular 

traveling wave soliton solution, periodic soliton 

solutions and multiple soliton solution which involve 
trigonometric functions, hyperbolic functions and 

complex solutions as well. We examined all 
constraints that guarantee the existence of these new 

exact solutions. The results obtained from this study 

are anticipated to be highly beneficial in numerous 
areas of mathematical physics, costal engineering and 

applied mathematics, including fluid dynamics, 
nonlinear optics, plasma physics, and other related 

fields. 
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