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ABSTRACT  

In this article, we present and employ an efficient algorithm for the assessment of the rate of heat 

generation constant ė𝑔𝑒𝑛[𝑗] on the time-fraction nonlinear three-dimensional heat equation in a cylindrical 

coordinate. The usage of the Maple software was deployed to formulate a five-step algorithm using the 

definition of the Riemann-Liouville fractional integral. Five numerical experiments were carried out for 

different heat generation constant ė𝑔𝑒𝑛[𝑗]  and the results are presented in tabular form and 3D plots. From 

our computational solutions obtained, we observed that an increase in heat generation constant ė𝑔𝑒𝑛[𝑗], 

yielded more heat generation in respective of the time-fractional order of the heat equation.   
 
Keywords: Four steps algorithm, heat generation constant, time-fractional, nonlinear heat equation, 
cylindrical coordinate 

 

INTRODUCTION       

Heat analysis plays a significant role in the study 
of thermodynamics and fluid mechanics in the 

area of chemical and mechanical engineering. It 
led to heat conduction equations being developed 

using an energy balance on a differential element 

inside the medium and remained the same 
regardless of the thermal conditions on the 

surfaces of the medium. Generally, heat transfer 
through a medium is three-dimensional. That is, 

the temperature varies along all three primary 

directions within the medium during the heat 
transfer process and the phenomenon is called 

heat generation, it occurs throughout the body of 
a medium which measures the rate of heat 

generation in a medium and is denoted as ė𝑔𝑒𝑛[𝑗] 

constant (Ahmed et al., 2020). 

In this paper, we aim to implement an efficient 
algorithm to assess the rate of heat generation constant 

ė𝑔𝑒𝑛[𝑗] on three-dimensional cylindrical time-

fractional nonlinear heat conduction equation in a 

cylindrical coordinate of the form:  

{
 
 

 
 
𝜕𝛼𝜓

𝜕𝑡𝛼
= 𝛽(𝜓

𝜕2𝜓

𝜕𝑟2
+
𝜕2𝜓

𝜕φ2
+
𝜕2𝜓

𝜕𝑧2
+
ė𝑔𝑒𝑛[𝑗]

𝑘
) ,

𝜓(𝑟, φ, 𝑧, 0) = 𝑓(𝑟,φ, 𝑧),

𝜓𝑡(𝑟, φ, 𝑧, 0) = 𝑔(𝑟, φ, 𝑧),
0 <  𝛼 ≤ 1, 𝑗 = 1,2, … ,5 .    

(1) 

 

Where ė𝑔𝑒𝑛[𝑗] is the constant rate of heat generation 

per unit volume, 𝛽 =
𝑘

𝜌𝑐
is the thermal diffusivity of 

the material, 𝑘 is thermal conductivity, 𝜌 is the 

density of the material, 𝑐 is the specific heat, and 
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𝑟, φ, 𝑧 are the cylindrical coordinate points.  
We considered the energy generation from an 

energy balance on a volume element in three- 
dimensional cylindrical coordinates of the form: 

 
Figure 1. Cylindrical-coordinate (Yunus, 2003) 

 
In the last two century, the focus on research of 

the time-fractional partial differential equations 
(FPDEs) in areas of sciences and engineering 

have gained a great significance in the modelling 

of real-life problems, analysis of mathematical 
and physical sciences, applied physics which 

providing solutions to complex processes in 
applied sciences and engineering (Falade et 

al.,2023; Basim, 2019; Hassan, 2022; Jassim, 

2016).  Several researchers have employed the 
concepts of Fractional calculus in areas like 

Visco-elasticity, biology, electronics, signal 
processing, genetic algorithms, robotic 

technology, traffic systems, telecommunication, 
chemistry, physics, economics and finance, and a 

host of many areas in applied sciences (Sedeeg, 

2016; Zhang et al., 2014; Mainardi, 2010). 
The study of the time-fractional heat equation has 

attracted a lot of attention from many 
Mathematicians all over the world each trying to 

study and assess the governing parameters, 

coordinates, and or equations associated with the 
general heat conduction equation. For example, 

Khalid et al., (2020) studied time-fractional heat 
equation in general orthogonal curvilinear and 

cylindrical coordinate systems, Xiaoyun & 

Mingyu (2010) obtained solutions to a time-
fractional diffusion-wave equation in cylindrical 

coordinates, Ibrahim et al., (2013) established a 
new difference scheme for time-fractional heat 

equations using Crank-Nicholson method, 

Dimple  et al., (2020) proposed and applied the 

concept of the fractional heat equation in higher space 

dimensions, Luis et al., (2011) obtained and analyzed 
a set of generalized fractional heat equations in the 

second law of thermodynamics, Arshad et al., (2021) 
obtained the numerical solution of the heat equation in 

polar cylindrical coordinates, Hami & Ömer (2021) 

presented approximate numerical solutions of the 
fractional heat equation with heat source and loss, and 

Qutaiba et al., (2023) obtained gives a determination 
of time-dependent coefficient in time-fractional heat 

equation.  

This paper is aim to extend and apply the work Falade 
et al., (2023) for the computational assessment of heat 

generation constant ė𝑔𝑒𝑛[𝑗] on three-dimensional 

cylindrical time-fractional nonlinear heat conduction 

equation in a cylindrical coordinate and vary the 
fractional order of the equation (1) and study the 

relationship between the constant ė𝑔𝑒𝑛[𝑗] and time-

fractional order. The proposed algorithm aims to 
reduce the time taken and computational cost 

drastically while the numeric analytic solutions are 
achieved and the changes in  
ė𝑔𝑒𝑛 characteristics are evaluated with the 3D 

cylindrical graphical representations. 

 

PRELIMINARIES 

Definition 1.  

The Riemann-Liouville, fractional integral in three- 
dimensional space is defined as Yubin (2019). 
 

𝐷𝑡
−𝛼

0
𝑅 𝜓(𝑟, φ, z, t)

=
1

Γ(𝛼)
∫ (𝑡
𝑡

0

− 𝑠)𝛼−1𝜓(s, 𝑟, φ, z) 𝑑𝑠,   𝛼 > 0,     (2) 
 

Suppose  𝛼 = 1 then equation (2) reduces to the 
following definite integral of the form: 

 

𝐷𝑡
−1

0
𝑅 𝜓(t, r, φ, z) = ∫ 𝜓(t, r, φ, z)

𝑡

0

𝑑𝑠,     𝛼 = 1,     (3) 

 

DESCRIPTION OF THE ALGORITHM 

To understand the basic concept of this algorithm, we 
considered Riemann-Liouville fractional definition 1 

in Maple software coded and evaluated the couple 
time-fraction nonlinear equation (2) as follows: 
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Step 1: 

Restart: 

With (PDE tools): 

With(plot): 

𝐷𝑖𝑔𝑖𝑡𝑠 ≔ 𝑅+; 
𝑁 ≔ 𝑅+; 
𝜓(𝑟,φ, 𝑧, 0) = 𝑓(𝑟, φ, 𝑧); 
𝜓𝑡(𝑟,φ, 𝑧, 0) = 𝑔(𝑟,φ, 𝑧); 
𝜓[0] ≔ 𝑓(𝑟, φ, 𝑧) + 𝑡 ∗ 𝑔(𝑟, φ, 𝑧); 

Step 2: 

for n from 0 to N do 

𝑭𝑷𝑫𝑬 ≔ 𝛽 ∗ (𝜓[𝑛] ∗ 𝑑𝑖𝑓𝑓(𝜓[𝑛], [𝑟, 𝑟])

+ 𝑑𝑖𝑓𝑓(𝜓[𝑛], [𝜑,𝜑])

+ 𝑑𝑖𝑓𝑓(𝜓[𝑛], [𝑧, 𝑧]) +
ė𝑔𝑒𝑛[𝑗]

𝑘
); 

𝜓[𝑛 + 1] ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦 (
1

GAMMA(𝛼)
)

∗ 𝑖𝑛𝑡 ((𝑡 − 𝑠)𝛼−1 ∗ 𝑠𝑢𝑏 (
𝑠 = 𝑡,
𝑭𝑷𝑫𝑬

) , 𝑠

= 0…𝑡) , 𝑎𝑠𝑠𝑢𝑚𝑒 = 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒;  

end do; 
Step 3: 

𝑺𝒐𝒍𝟏 ≔ 𝑠𝑢𝑚(𝜓[𝑘], 𝑘 = 0…𝑁 + 1) 
 

 

Step 4: 

for i from 0 by 0.2 to 2 do 

𝜓[𝑖] ≔ 𝑒𝑣𝑎𝑙𝑓

(

 
 
 
 
 

𝑒𝑣𝑎𝑙

(

 
 
 
 

𝑆𝑜𝑙1, [𝑡 = 0.1, 𝑟 = 𝑖,

φ = i, z = i, ė𝑔𝑒𝑛[𝑗] =

(

 
 

10
20
30
40
50

𝛽 = 0.3, 𝛼 = 1.0] )

 
 
 
 

)

 
 
 
 
 

; 

end do; 

𝜓[𝑖] ≔ 𝑒𝑣𝑎𝑙𝑓

(

 
 
 
 
 

𝑒𝑣𝑎𝑙

(

 
 
 
 

𝑆𝑜𝑙1, [𝑡 = 0.1, 𝑟 = 𝑖,

φ = i, z = i, ė𝑔𝑒𝑛[𝑗] =

(

 
 

10
20
30
40
50

𝛽 = 0.3, 𝛼 = 0.8] )

 
 
 
 

)

 
 
 
 
 

; 

end do; 
⋮ 

𝜓[𝑖] ≔ 𝑒𝑣𝑎𝑙𝑓

(

 
 
 
 
 

𝑒𝑣𝑎𝑙

(

 
 
 
 

𝑆𝑜𝑙1, [𝑡 = 0.1, 𝑟 = 𝑖,

φ = i, z = i, ė𝑔𝑒𝑛[𝑗] =

(

 
 

10
20
30
40
50

𝛽 = 0.3, 𝛼 = 0.2] )

 
 
 
 

)

 
 
 
 
 

; 

end do; 
Step 5: 

𝜓[1.0] ≔ 𝑒𝑣𝑙(𝑆𝑜𝑙1, [𝑡 = 0.1, 𝑧 = 𝑖, ė𝑔𝑒𝑛[𝑗] = 10, 𝛽
= 0.3, 𝛼 = 1.0]); 

𝜓[0.8] ≔ 𝑒𝑣𝑙(𝑆𝑜𝑙1, [𝑡 = 0.1, 𝑧 = 𝑖, ė𝑔𝑒𝑛[𝑗] = 10, 𝛽
= 0.3, 𝛼 = 0.8]); 

𝜓[0.6] ≔ 𝑒𝑣𝑙(𝑆𝑜𝑙1, [𝑡 = 0.1, 𝑧 = 𝑖, ė𝑔𝑒𝑛[𝑗] = 10, 𝛽
= 0.3, 𝛼 = 0.6]); 

𝜓[0.4] ≔ 𝑒𝑣𝑙(𝑆𝑜𝑙1, [𝑡 = 0.1, 𝑧 = 𝑖, ė𝑔𝑒𝑛[𝑗] = 10, 𝛽
= 0.3, 𝛼 = 0.4]); 

𝜓[0.2] ≔ 𝑒𝑣𝑙(𝑆𝑜𝑙1, [𝑡 = 0.1, 𝑧 = 𝑖, ė𝑔𝑒𝑛[𝑗] = 10, 𝛽
= 0.3, 𝛼 = 0.2]); 

𝑝𝑙𝑜𝑡3𝑑 (𝜓[1.0], 𝑟 = −
1

𝜋
…
1

𝜋
,𝜑 = −

1

𝜋
…
1

𝜋
, 𝑔𝑟𝑖𝑑

= [100,100, 𝑐𝑜𝑙𝑜𝑟 = 𝑏𝑙𝑢𝑒]) ; 

𝑝𝑙𝑜𝑡3𝑑 (𝜓[0.8], 𝑟 = −
1

𝜋
…
1

𝜋
,𝜑 = −

1

𝜋
…
1

𝜋
, 𝑔𝑟𝑖𝑑

= [100,100, 𝑐𝑜𝑙𝑜𝑟 = 𝑟𝑒𝑑]) ; 

𝑝𝑙𝑜𝑡3𝑑 (𝜓[0.6], 𝑟 = −
1

𝜋
…
1

𝜋
,𝜑 = −

1

𝜋
…
1

𝜋
, 𝑔𝑟𝑖𝑑

= [100,100, 𝑐𝑜𝑙𝑜𝑟 = 𝑔𝑟𝑒𝑒𝑛]) ; 

𝑝𝑙𝑜𝑡3𝑑 (𝜓[0.4], 𝑟 = −
1

𝜋
…
1

𝜋
,𝜑 = −

1

𝜋
…
1

𝜋
, 𝑔𝑟𝑖𝑑

= [100,100, 𝑐𝑜𝑙𝑜𝑟 = 𝑝𝑢𝑟𝑝𝑙𝑒]) ; 

𝑝𝑙𝑜𝑡3𝑑 (𝜓[0.2], 𝑟 = −
1

𝜋
…
1

𝜋
,𝜑 = −

1

𝜋
…
1

𝜋
, 𝑔𝑟𝑖𝑑

= [100,100, 𝑐𝑜𝑙𝑜𝑟 = 𝑦𝑒𝑙𝑙𝑜𝑤]) ; 

Output: See Table 2 and Figures (2 to 6) 
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NUMERICAL EXPERIMENT 

In this section, we present five test cases of the heat generation constant ė𝒈𝒆𝒏 for the determination of the 

amount of heat generated in the medium using the proposed five-step algorithm. 

 

Table 1. Experimental parameters of the rate of heat generation ė𝑔𝑒𝑛[𝑗] , 𝛽 thermal diffusivity, and 𝑡 

coordinate. 

Parameters Case 1 Case 2 Case 3 Case 4 Case 5 

ė𝑔𝑒𝑛 10 20 30 40 50 

𝛽 0.3 0.3 0.3 0.3 0.3 

t 0.1 0.1 0.1 0.1 0.1 

k 1.0 1.0 1.0 1.0 1.0 

 

Table 2. Simulation results for the heat constant ė𝑔𝑒𝑛[𝑗] on the variation of the time-fractional nonlinear 

heat equation in a cylindrical coordinate. 

(𝒓, 𝛗,𝒛) Order Case 1 Case 2 Case 3 Case 4 Case 5 

(0,0,0) 𝛼 = 1.0 1.624717507 2.225856907 2.826996307 3.428135707 4.029275107 

𝛼 = 0.8 2.004607157 3.031213962 4.057820768 5.084427575 6.111034381 

𝛼 = 0.6 2.629726937 4.341785713 6.053844487 7.765903267 9.477962046 

𝛼 = 0.4 3.643724683 6.438794175 9.233863665 12.02893316 14.82400264 

𝛼 = 0.2 5.273264555 9.766161316 14.25905808 18.75195484 23.24485159 

(0.2,0.2,0.2) 𝛼 = 1.0 1.578803755 2.179834625 2.780865495 3.381896365 3.982927236 

𝛼 = 0.8 1.962261838 2.988333878 4.014405918 5.040477958 6.066549998 

𝛼 = 0.6 2.590982962 4.300630481 6.010278000 7.719925521 9.429573041 

𝛼 = 0.4 3.604814768 6.390080532 9.175346296 11.96061206 14.74587782 

𝛼 = 0.2 5.219832796 9.677510148 14.13518750 18.59286485 23.05054220 

(0.4,0.4,0.4) 𝛼 = 1.0 1.456354435 2.057125243 2.657896051 3.258666858 3.859437666 

𝛼 = 0.8 1.849446032 2.874236654 3.899027276 4.923817897 5.948608518 

𝛼 = 0.6 2.488316391 4.192185999 5.896055605 7.599925212 9.303794818 

𝛼 = 0.4 3.503315121 6.265088957 9.026862789 11.78863662 14.55041046 

𝛼 = 0.2 5.083376354 9.456660111 13.82994387 18.20322763 22.57651139 

(0.6,0.6,0.6) 𝛼 = 1.0 1.300219148 1.900722802 2.501226456 3.101730110 3.702233765 

𝛼 = 0.8 1.706617566 2.730091826 3.753566085 4.777040345 5.800514603 

𝛼 = 0.6 2.361016075 4.058950210 5.756884347 7.454818483 9.152752619 

𝛼 = 0.4 3.383814226 6.121455523 8.859096824 11.59673812 14.33437942 

𝛼 = 0.2 4.933751753 9.220340567 13.50692939 17.79351820 22.08010702 

(0.8,0.8,0.8) 𝛼 = 1.0 1.172456259 1.772808879 2.373161500 2.973514120 3.573866740 

𝛼 = 0.8 1.593886219 2.616616280 3.639346343 4.662076405 5.684806466 

𝛼 = 0.6 2.268861205 3.963439755 5.658018305 7.352596856 9.047175407 

𝛼 = 0.4 3.313596153 6.037594258 8.761592362 11.48559047 14.20958857 

𝛼 = 0.2 4.870505662 9.108081974 13.34565830 17.58323461 21.82081092 

(1.0,1.0,1.0) 𝛼 = 1.0 1.143966950 1.744346564 2.344726178 2.945105792 3.545485406 

𝛼 = 0.8 1.582472698 2.605335768 3.628198838 4.651061909 5.673924977 

𝛼 = 0.6 2.285434179 3.980612462 5.675790744 7.370969028 9.066147309 

𝛼 = 0.4 3.375629389 6.102065895 8.828502402 11.55493891 14.28137541 

𝛼 = 0.2 5.006683046 9.253019195 13.49935535 17.74569150 21.99202765 

(1.2,1.2,1.2) 𝛼 = 1.0 1.289633468 1.890295382 2.490957296 3.091619210 3.692281124 

𝛼 = 0.8 1.752323232 2.776577293 3.800831356 4.825085418 5.849339479 
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𝛼 = 0.6 2.501273941 4.202724203 5.904174463 7.605624724 9.307074985 

𝛼 = 0.4 3.684727480 6.436664697 9.188601913 11.94053913 14.69247635 

𝛼 = 0.2 5.515826332 9.853772525 14.19171873 18.52966492 22.86761112 

(1.4,1.4,1.4) 𝛼 = 1.0 1.701002622 2.302496024 2.903989426 3.505482828 4.106976230 

𝛼 = 0.8 2.211003707 3.239354809 4.267705909 5.296057010 6.324408110 

𝛼 = 0.6 3.058982064 4.778905861 6.498829657 8.218753455 9.938677250 

𝛼 = 0.4 4.467405117 7.294452333 10.12149955 12.94854677 15.77559398 

𝛼 = 0.2 6.834276958 11.44205212 16.04982728 20.65760244 25.26537759 

(1.6,1.6,1.6) 𝛼 = 1.0 2.534952750 3.138805555 3.742658360 4.346511165 4.950363970 

𝛼 = 0.8 3.163188615 4.203165335 5.243142054 6.283118774 7.323095495 

𝛼 = 0.6 4.278113479 6.050457158 7.822800837 9.595144517 11.36748820 

𝛼 = 0.4 6.346422983 9.386599805 12.42677663 15.46695345 18.50713027 

𝛼 = 0.2 10.40385572 15.77728845 21.15072119 26.52415393 31.89758665 

(1.8,1.8,1.8) 𝛼 = 1.0 4.139176318 4.750010061 5.360843804 5.971677547 6.582511290 

𝛼 = 0.8 5.119926074 6.194300365 7.268674659 8.343048952 9.417423244 

𝛼 = 0.6 7.116447866 9.043890097 10.97133232 12.89877456 14.82621679 

𝛼 = 0.4 11.60758312 15.27836214 18.94914115 22.61992017 26.29069919 

𝛼 = 0.2 22.42051565 30.05935562 37.69819558 45.33703555 52.97587553 

(2.0,2.0,2.0) 𝛼 = 1.0 7.402216739 8.034585651 8.666954562 9.299323474 9.931692385 

𝛼 = 0.8 9.681020933 10.86150668 12.04199243 13.22247817 14.40296392 

𝛼 = 0.6 15.48086368 17.88676214 20.29266060 22.69855906 25.10445754 

𝛼 = 0.4 31.92861127 37.54470538 43.16079950 48.77689359 54.39298770 

𝛼 = 0.2 79.25952077 93.88680907 108.5140973 123.1413856 137.7686739 
  

Figures 2 (a, b, c,d,e):  The graphical representation of heat generation constantė𝑔𝑒𝑛 =

[10, 20, 30, 40, 50] and 𝛼 = 1.0 
 

 
 



YJPAS Vol 1, Issue 1, Pages 264-276  ISSN: 3043-6184 Falade et al., 2025 
ALal. 

 
 

  287  | PUBLICATION OF YUSUF MAITAMA SULE UNIVERSITY, KANO  
 1 

 
 

 

Figures3 (a, b,c,d,e).  The graphical representation of heat generation constantė𝑔𝑒𝑛 =

[10, 20, 30, 40, 50] and 𝛼 = 0.8 
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Figures4 (a,b,c,d,e):  The graphical representation of heat generation constant ė𝑔𝑒𝑛 =
[10, 20, 30, 40, 50]and 𝛼 = 0.6 

 

 
 

Figures5 (a,b,c,d,e):  The graphical representation of heat generation constant ė𝑔𝑒𝑛 =

[10, 20, 30, 40, 50]and 𝛼 = 0.4 
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Figures6 (a,b,c,d,e):  The graphical representation of heat generation constant ė𝑔𝑒𝑛 =

[10, 20, 30, 40, 50]and 𝛼 = 0.2 
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RESULTDISCUSSION 

Figures 2. Depicts the simulation results obtained 
when the heat generation constants ė𝒈𝒆𝒏 =
𝟏𝟎, 𝟐𝟎, 𝟑𝟎, 𝟒𝟎, 𝟓𝟎 and the fraction order is integer 
= 𝟏. 𝟎 . From the computational results obtained 

the following maximum heat is generated when at 
the𝜶 = 𝟏. 𝟎 
Figure 2a ė𝒈𝒆𝒏 = 𝟏𝟎 (𝟐. 𝟐𝟕) 
Figure 2b ė𝒈𝒆𝒏 = 𝟐𝟎 (𝟑. 𝟒𝟖) 
Figure 2c ė𝒈𝒆𝒏 = 𝟑𝟎 (𝟒. 𝟒𝟗) 
Figure 2d ė𝒈𝒆𝒏 = 𝟒𝟎 (𝟓. 𝟗𝟎) 
Figure 2e ė𝒈𝒆𝒏 = 𝟓𝟎 (𝟕. 𝟏𝟏) 
Figures 3. Depict the simulation results obtained 

when the heat generation constants ė𝒈𝒆𝒏 =
𝟏𝟎, 𝟐𝟎, 𝟑𝟎, 𝟒𝟎, 𝟓𝟎, and the fraction order was 𝜶 =
𝟎. 𝟖. From the computational results obtained the 
following maximum heat is generated: 

Figure 3a ė𝒈𝒆𝒏 = 𝟏𝟎 (𝟐. 𝟖𝟑) 
Figure 3b ė𝒈𝒆𝒏 = 𝟐𝟎 (𝟒. 𝟔𝟒) 
Figure 3c ė𝒈𝒆𝒏 = 𝟑𝟎 (𝟔. 𝟒𝟓) 
Figure 3d ė𝒈𝒆𝒏 = 𝟒𝟎 (𝟖. 𝟐𝟓) 
Figure 3e ė𝒈𝒆𝒏 = 𝟓𝟎 (𝟏𝟎. 𝟎𝟔) 
Figures 4. Depict the simulation results obtained 

when the heat generation constants ė𝒈𝒆𝒏 =
𝟏𝟎, 𝟐𝟎, 𝟑𝟎, 𝟒𝟎, 𝟓𝟎, and the fraction order was 𝜶 =
𝟎. 𝟔 from the computational results obtained the 

following maximum heat is generated: 
Figure 4a ė𝒈𝒆𝒏 = 𝟏𝟎 (𝟑. 𝟔𝟑) 
Figure 4b ė𝒈𝒆𝒏 = 𝟐𝟎 (𝟔. 𝟐𝟖) 
Figure 4c ė𝒈𝒆𝒏 = 𝟑𝟎 (𝟖. 𝟗𝟑) 
Figure 4d ė𝒈𝒆𝒏 = 𝟒𝟎 (𝟏𝟏. 𝟓𝟕) 
Figure 4e ė𝒈𝒆𝒏 = 𝟓𝟎 (𝟏𝟒. 𝟐𝟐) 
Figures 5. Depict the simulation results obtained 

when the heat generation constants ė𝒈𝒆𝒏 =
𝟏𝟎, 𝟐𝟎, 𝟑𝟎, 𝟒𝟎, 𝟓𝟎, and the fraction order was 𝜶 =
𝟎. 𝟒  From the computational results obtained the 
following maximum heat is generated: 

Figure 5a ė𝒈𝒆𝒏 = 𝟏𝟎 (𝟒. 𝟕𝟓) 
Figure 5b ė𝒈𝒆𝒏 = 𝟐𝟎 (𝟖. 𝟓𝟓) 
Figure 5c ė𝒈𝒆𝒏 = 𝟑𝟎 (𝟏𝟐. 𝟑𝟒) 
Figure 5d ė𝒈𝒆𝒏 = 𝟒𝟎 (𝟏𝟔. 𝟏𝟒) 
Figure 5e ė𝒈𝒆𝒏 = 𝟓𝟎 (𝟏𝟗. 𝟗𝟒) 

Figures 6. Depict the simulation results obtained 
when the heat generation constants ė𝒈𝒆𝒏 =
𝟏𝟎, 𝟐𝟎, 𝟑𝟎, 𝟒𝟎, 𝟓𝟎, and the fraction order was 

𝜶 = 𝟎. 𝟐  From the computational results obtained 
the following maximum heat is generated: 

Figure 6a ė𝒈𝒆𝒏 = 𝟏𝟎 (𝟔. 𝟐𝟓) 
Figure 6b ė𝒈𝒆𝒏 = 𝟐𝟎 (𝟏𝟏. 𝟓𝟔) 
Figure 6c ė𝒈𝒆𝒏 = 𝟑𝟎 (𝟏𝟔. 𝟖𝟓) 
Figure 6d ė𝒈𝒆𝒏 = 𝟒𝟎 (𝟐𝟐. 𝟐𝟎) 
Figure 6e ė𝒈𝒆𝒏 = 𝟓𝟎 (𝟐𝟕. 𝟓𝟓) 
 Finally, the assessment of the heat generation 

constant ė𝒈𝒆𝒏demonstrated that higher the heat 
constant, yielded more heat obtainedirrespective 
of the order of the three-dimensional time-

fractional non-linear heat equation in a cylindrical 
coordinate.  

 

CONCLUSION 

In this article, the heat generation constantė𝑔𝑒𝑛 on 

time fractional nonlinear three-dimensional heat 
equation in cylindrical coordinates was 

investigated utilizing a newly formulated five-step 

algorithm. Applying this technique, we have 
successfully obtained a closed analytical solution 

which embedded with time-fractional order and 
the rate of heart generation constant using Caputo 

definition in the Maple software coded form. The 

simulation solutions are carried out by increasing 

the rate of the heat generation constantė𝑔𝑒𝑛. The 

results obtained are presented in 3D plots which 

depict the increase in heat generation constant and 
yielded an increase of heat in the medium 

irrespective of the order of the heat equation. The 

simulation results represent a significant 
contribution to the understanding and exploration 

of the software package in solving time-fractional 
equations. The implemented method was 

straightforward, trustworthy, and efficient, leading 

to significant change in the field of computational 
mathematics. Therefore, the present approach 

paves the way for further applications to 
investigate linear and nonlinear time-fraction 

evolution equations that commonly appear in 

various areas of applied sciences and engineering. 
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APPENDIX 

Case 1:    ė𝑔𝑒𝑛 = 10, 𝛽 = 0.3, 𝑡 = 0.1 

Step 1:  

 

 
 

 

Step 2:  

Step 3:  

 

Step 3: 
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Step 4:  
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Step 5:  

 

 
 

 


