

YUMSUK JOURNAL OF PURE AND APPLIED SCIENCES

EVALUATING THE IMPLICATIONS OF HEAT SOURCE AND SINK ON MHD-FREE CONVECTION FILLED WITH POROUS MATERIAL IN AN UPSTANDING CHANNEL

¹*Ojemeri G., ²Hamza M. M., ³Shuaibu A. and ⁴Onwubuya I. O.

^{1,3}Department of Mathematics, College of Sciences, Federal University of Agriculture, P. M. B. 28, Zuru, Kebbi State.

²Department of Mathematics, Faculty of Physical and Computing Sciences, Usmanu Danfodiyo University, P. M. B. 2346, Sokoto State.

⁴Department of Mathematics, Faculty of Sciences, Air Force Institute of Technology, P. M. B. 2104, Kaduna State.

*Corresponding Author's email: godwinojemeri@gmail.com

ABSTRACT

This paper performs an analytical simulation on the implications of magnetic field and porosity effect on an electrically conducting fluid in an upward-looking channel influenced by heat source and sink and the Navier slip condition. The governing equations have been derived by using the theory of simultaneous Ordinary Differential Equations. The effects of the pertinent flow parameters on velocity and temperature were graphically displayed. The frictional force and the heat transfer coefficient on the heated and cold plates have also been calculated. It is revealed that the hydrodynamic and thermodynamic gradients of the fluid are enhanced by the heat generation parameter ($H_t < 0$) and permeability of the porous materials (Da), whereas raising the heat absorption parameter ($H_t > 0$) and magnetic number (M) makes the fluid velocity diminish. The comparison of the present investigation with previously published work demonstrates an excellent relationship for the limiting cases, thereby verifying the accuracy and validity of the present work.

Keywords: Heat generation/absorption, Magneto-hydrodynamics (MHD), Darcy number (Da), Navier Slip, Vertical channel

INTRODUCTION

Natural convection flow in a boundary layer regime is a motion that is produced from the interaction of gravity with density differences within a fluid. These differences happen because of the temperature or concentration gradients or due to their composition. Studies pertaining to free convection flows in vertical parallel plate channels for a single phase of an incompressible viscous fluids have gained increasing attention over the years, both theoretically (exact or approximate solutions) and experimentally, owing to the fact that many practical applications involve natural

convection heat transfer (Al-Subaie and Chamkha, 2004; Zullkifree *et al.* 2019). The laminar flow of a viscous fluid between two parallel surfaces, one of which travels tangentially with respect to the other, is known as the Couette flow. This flow can be motivated by a pressure gradient that is present in the flow direction (Mng'ang'a 2023). In view of these, Khan *et al.* (2022) used the second law to evaluate how Newtonian heating affects the Couette flow of a viscoelastic dusty fluid and the transfer of heat in a rotating frame. Umavathi *et al.* (2010) studied the Poiseuille-Couette flow with heat transfer in the inclined channel. They came to the conclusion that increases in the Gasthof

number, angle of inclination, and height ratio increase velocity, while increases in the Hartmann number, viscosity, and conductivity ratios lower the velocity profiles. Beg et al. (2010) analyzed the oblique magnetic field in an oscillating, extremely porous medium. Barikbin et al. (2014) examined non-Newtonian fluid for MHD Couette flow using the Ritz-Galerkin method. Sreekala and Reddy (2014) studied the effect of an inclined magnetic field on the steady MHD Couette flow. Joseph et al. (2014) evaluated heat transfer in an inclined magnetic field with transient hydromagnetic Couette flow between two infinitely parallel porous plates. The temperature-dependent transient MHD Couette flow and heat transfer of dusty fluid were reported by Mosayebidorcheh et al. (2015). Jha et al. (2015) inspected thermal radiation with unsteady MHD free convective Couette flow. Ngiangia and Okechukwu (2016) pondered the impact of variable electro-conductivity radiation. They indicated that increases electroconductivity, Prandtl number, Reynolds number, and Grashof number result in an increase in velocity distribution, while increases in the magnetic field result in a drop in velocity. Raju et al. (2016) discussed the influence of diffusion thermodynamics and thermal diffusion on a natural convection Couette flow using the six- element method. Ali et al. (2016) investigated convective cooling of the nano fluids in a rotating system. Job and Gunakala (2016) investigated the thermal radiation for upstanding permeable plates using Galerkin's finite element method. Also, Ali et al. (2017) considered the Couette flow of a Maxwell fluid in three dimensions with periodic injection or suction. Hussain et al. (2018) analyzed instability of the MHD Couette flow of an electrically conducting fluid. Anyanwu et al. (2020) discussed the influence of radioactive and a uniform pressure gradient on transient MHD Couette flow. Ajibade et al. (2021) outlined the implications of viscous dissipation on steady natural convection Couette flow of a heat-emitting fluid in an up-facing channel.

Basically, the concept of natural convection flows in parallel plate is most often modeled under the assumptions of constant surface temperature,

ramped wall temperature, or constant surface heat flux (Rajput 2011a,2011b, Narahari 2012, Singh and Sarehu 2015). However, in many real-life circumstances where the heat transfer from the surface is assumed to be proportional to the local surface temperature, the above assumptions fail. These kind of flows are referred to as conjugate convective flows, and the corresponding condition of the heat transfer to the local surface temperature is called as Newtonian heating (Lesnic *et al.* 2004). Natural convection involving Newtonian heating or cooling through various geometrical shapes and channels have been reported by several scholars. The natural convection boundary layer flow over a vertical surface with Newtonian heating was first studied by Merkin (1994). In view of this, Shehzad et al. (2014) investigated three-dimensional flow of Jeffrey fluid with Newtonian heating. Akbar et al. (2013) discussed the effect of Newtonian heating on the mixed convective magneto-hydrodynamics peristaltic flow of Jeffrey fluid, while Hamza (2016) investigated the influence of Navier Slip and Newtonian heating in the transient flow of an exothermic fluid in vertical channel. Lesnic et al. (1999, 2000) studied free convection boundary layer flows along vertical and horizontal surfaces in a porous medium generated by Newtonian heating. Subsequently, a free convection boundary layer flow above a nearly horizontal surface in a porous medium with Newtonian heating was reported by Lesnic et al. (2004). Abid et al. (2013) studied heat and mass transfer past an oscillating vertical plate with Newtonian heating, where the governing equations of the problem were solved by the Laplace transform technique. Subsequently, Abid et al. (2014) studied an unsteady boundary layer MHD-free convection flow in a porous medium with constant mass diffusion and Newtonian heating analytically using Laplace transform technique. An unsteady hydro-magnetic natural convection flow past an impulsively moving vertical plate with Newtonian heating in a rotating system was studied by Seth et al. (2015). Das et al. (2015) performed a numerical analysis on unsteady heat and mass transfer of hydro-magnetic Casson fluid across a vertical plate in the presence of chemical reaction and thermal radiation. Qayyum et al. (2017) described the heat and mass transfer of water-B nano fluid across a stretching sheet in the coexistence of chemical reactions and thermal radiation. Hayat *et al.* (2018) discussed the impact of MHD flow of Powell-Eyring fluid by a stretching cylinder with thermal radiation through an inclined magnetic field under the Newtonian heating effect. Zin *et al.* (2018) presented an exact and numerical solutions for the unsteady MHD heat and mass transfer flow of Jeffrey fluid flowing through an oscillatory vertical plate provoked by thermal radiation and Newtonian heating factors.

Understanding the impact of heat sink or source on fluid flow is very key in several engineering, technological sectors of exothermic or endothermic fluid response, and these effects are essential in gauging heat transference. Heat source/sink impact have drawn much interest attributable to its possible advantages in fields such as drying engineering processes, chemical factories, coolers and heaters of electrical and mechanical equipment, storage of nuclear waste etc. (Gambo et al. 2021). Several scholars looked into the impacts of heat source and sink fluid on several flow regions. With these concerns in mind, Ojemeri et al. (2024) recently published an analytical investigation of a chemically reactive hydromagnetic fluid affected by heat generation and absorption flowing across a super hydrophobic micro channel that is heated alternatively. Ojemeri and Onwubuya (2023a) describe the analysis of steady mixed convection flow of Arrhenius-controlled chemical reaction and an exothermic fluid along an isothermally heated super hydrophobic micro channel due to the heat source or sink. Ojemeri and Hamza (2022) presented a theoretical investigation of chemically reactive fluid in a MHD natural convection flow blended with heat source and sink effects employing a homotopy perturbation approach. Oni and Jha (2019) investigated the impacts of heat source and sink fluid on free convection confined to an upstanding annulus with time-periodic heating boundary conditions. It is concluded that heat source and absorption parameters affect velocity distribution, periodic temperature profile, Nusselt number, and frictional force at the cylinder walls, respectively. Chamkha et al. (2017) scrutinized the impact of heat sink or

source on hydromagetic mixed convection flow in a porous enclosure filled with a Cu-water nano fluid affected by partial slip conditions. Chu *et al.* (2020) studied the nonlinear thermal radiation and heat sink/source of a bidirectional, periodically non-stationary surface instigated by a rate-type nano fluid involving a gyrotactic microbe. Zhao *et al.* (2021) outlined the impacts of heat source/sink, thermal radiation, and joule heating on the mixed convective entropy-optimized nano material hydromagnnetic flow of Ree-Eyring fluid restricted by two rotating disks.

The consequences of heat generation/absorption, MHD, and Darcy permeability along upwardlooking channel using the regular perturbation method have not been investigated in a single work in any of the above-mentioned literature, which prompted the interest in this current study. Thus, motivated by the above knowledge gap, the purpose of this research is to expand the work carried out by Zulkiflee et al. (2019) by investigating impacts the of generation/absorption, MHD and permeability parameters on a Couette flow inside two vertical parallel plates with the involvement of Newtonian heating using the theory of simultaneous ordinary differential equation. Various illustrative graphs have been sketched to demonstrate the flow pattern of the pertinent parameters embedded in the flow regime. This research can find relevance in engineering and industrial technologies, namely cooling of atomic reactors, geothermal supplies, porous solids drying, thermal insulation, gas drainage, plasma physics, gas turbines, fossil fuel combustion, food processing industries, and so forth.

MATERIALS AND METHOD

We consider a fully developed laminar MHD flow of an electrically conducting viscous fluid passing through two vertical parallel plates with Newtonian heating instigated by heat generation/absorption and Darcy porosity effects. As shown in Figure 1, the wall at $y_0 = 0$ is instigated by Navier slip effect, whereas the no-slip surface is kept at $y_0 = H$. The flow is affected by a uniform transverse magnetic field in the involvement of thermal

buoyancy effects. All the fluid characteristics are assumed to be constant. The flow variables are functions of space y only. Following Zullkifree et al. (2019), the leading equations for the current problems dimensional, employing in Boussinesq buoyancy approximation with boundary conditions and assuming that the fluid is affected by heat generation, absorption and porosity effects, can be modeled as follows:

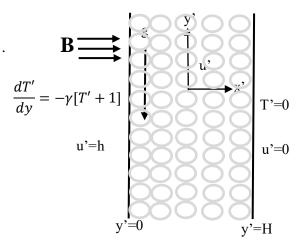


Figure 1: Schematic diagram of the Flow

$$v\frac{d^{2}u'}{dy'^{2}} + g\beta(T' - T_{O}) - \left(\frac{\sigma B_{O}^{2}}{\rho} + \frac{1}{K}\right)u' = 0 \quad (1)$$

$$\frac{k}{\rho c_{\rho}}\frac{d^{2}T'}{dy'^{2}} - \frac{Q_{O}}{\rho c_{\rho}}(T' - T_{O}) = 0 \quad (2)$$

Where y and x are the dimensional distances along and perpendicular to the plate. u' and T' are the dimensional velocity and temperature. $Q_{\scriptscriptstyle 0}$, ν , k, ρ , c_p , β and g are the dimensional heat generating/absorbing parameter, kinematic viscosity, thermal conductivity, density, specific heat at constant pressure, thermal expansion coefficient, and acceleration due to gravity of the fluid respectively.

The appropriate boundary conditions of this formulation are:

$$u' = U_0$$

$$\frac{dT'}{dy'} = -\frac{h_s}{k}T'$$
 at $y' = 0$

$$T' = T_h^0$$
 at $y' = h$ (3)

To solve eqns (1) to (3), we employ the dimensionless quantities and parameters:

$$u = \frac{u'}{U}, y = \frac{y'}{h}, \theta = \frac{T' - T_0}{T_w - T_0}, x = \frac{x'v}{Uh^2},$$

$$M^2 = \frac{\sigma\beta_0^2h^2}{\rho v}, Gr = \frac{g\beta(T_w - T_0)h^3}{v^2},$$

$$Da = \frac{k}{h^2}, H_t = \frac{Q_0h^2}{k}$$
(4)

inserting the dimensionless quantities in Eqn (4), on the basic eqns (1) to (3), we have the dimensionless governing equation as:

$$\frac{d^2U}{dy^2} - \left(M^2 + \frac{1}{Da}\right)U = -Gr\theta \tag{5}$$

$$\frac{\dot{d^2}\theta}{dv^2} - H_t \theta = 0 \tag{6}$$

The corresponding boundary conditions are:

The corresponding boundary condition
$$\frac{d\theta}{dY} = -\gamma(\theta + 1)$$

$$U = 1$$

$$\theta = 0$$

$$U = 0$$

Where M is the magnetic field intensity, Gr is thermal Grashof number, Da is the Darcy porosity parameter, H_t is the Heat source/sink parameter and γ is the Navier slip parameter.

Method of Solution

The resultant ordinary differential equations are systems of ordinary differential equations with constant coefficients. This system of linear ordinary differential equations is solved in closed form by the theory of simultaneous ordinary differential equations (Jha et al., 2014). Also, the derived solutions in terms of temperature, velocity, skin friction, and Nusselt number are discussed in detail with the aid of plotted graphs using a userfriendly software program (MATLAB 2015a).

The analytical solutions of the temperature and velocity have been determined as follows:

$$\theta = W_1 \cosh(y\sqrt{H_t}) + W_2 \sinh(y\sqrt{H_t})$$

$$U = W_3 \cosh(Ry) + W_4 \sinh(Ry) + W_5 \cosh(y\sqrt{H_t}) + W_6 \sinh(y\sqrt{H_t})$$
(9)
The rate of heat transfers in terms Nusselt number and the skin friction have been derived as:

and the skin friction have been derived as:

$$\frac{d\theta}{dx}\mid_{y=0} = W_2\sqrt{H_t} \tag{10}$$

$$\begin{split} \frac{d\theta}{dy} \mid_{y=1} &= W_1 \sqrt{H_t} \sinh\left(\sqrt{H_t}\right) + W_2 \quad (11) \\ \frac{dU}{dy} \mid_{y=0} &= W_4 \, \mathrm{R} + W_6 \sqrt{H_t} \qquad (12) \\ \frac{dU}{dy} \mid_{y=1} &= W_3 \, R \sinh(Ry) + W_4 \, R \cosh(Ry) + \\ W_5 \sqrt{H_t} \sinh\left(\sqrt{H_t}\right) + W_6 \sqrt{H_t} \cosh\left(\sqrt{H_t}\right) \quad (13) \end{split}$$

Where

$$R^{2} = M^{2} + \frac{1}{Da}, \quad W_{1}$$

$$= \frac{-\gamma/\sqrt{H_{t}}sinh(\sqrt{H_{t}})}{\frac{\gamma}{\sqrt{H_{t}}sinh(\sqrt{H_{t}})} - cosh(\sqrt{H_{t}})},$$

$$W_{2} = \frac{-\gamma(W_{1} + 1)}{\sqrt{H_{t}}}, W_{3} = 1 - W_{5}$$

$$\begin{array}{l} W_{4} = \\ \frac{W_{5}[\cosh(R) - \cosh(\sqrt{H_{t}})] - W_{6}\sinh(\sqrt{H_{t}}) - \cosh(R)}{\sinh(R)}, W_{5} = \\ \frac{-GrW_{1}}{H_{t} - R^{2}}, W_{6} = \frac{-GrW_{2}}{H_{t} - R^{2}}. \end{array}$$

RESULT AND DISCUSSION

The theoretical investigation of heat generation/absorption effect on steady hydromagnetic flow of an incompressible electricallyconducting fluid traveling vertically upward through two parallel vertical plates saturated with The formulated porous material. governing equations are systems of ordinary differential equations with constant coefficients. This system of linear ordinary differential equations was solved in closed form by the theory of simultaneous ordinary differential equations. Also, the derived solutions in terms of temperature, velocity, skin friction, and Nusselt number have been discussed in detail with the aid of plotted graphs. The default values chosen $are \gamma = 1, M = 0.5, H_t =$ research 0.5, Da = 0.5 and Gr = 100 exceptotherwise stated, as it relate to real-life situations.

Figures 2a and 2b exhibit the action of heat source or sink parameter on the temperature profile. It is evident from these figures that the temperature is expanded for $H_t < 0$, as portrayed in Figure 2a, but the temperature is reduced for $H_t > 0$, as displayed in Figure 2b. With heat generation along the lower plate, higher temperature profiles are anticipated. Figures 6a and 6b showcase the functions of heat generation and absorption on the heat transfer

Naturally, it is true because when heat is absorbed, the fluid becomes heavier and the convection current decays, leading to a drop in the fluid temperature. On the other hand, raising the heat generation parameter, strengthens the convection current, consequently leading to a weakening in fluid density and a surge in temperature.

Figures 3a and 3b show the effects of changing the heat sink or source settings on the velocity gradient. As expected, the same effect observed in the velocity gradient is replicated in the temperature gradient when the heat source $(H_t < 0)$ and heat sink $(H_t > 0)$ levels increase, as depicted respectively in Figures 3a and 3b. Naturally speaking, this is so because of the additional heat boost, which amplifies the heat flow behavior of the system, thereby giving rise to the thermal profile of the fluid and ultimately enhancing the flow in the system. Additionally, heat source/sink parameter is assumed to carry more heat near the plate, which helps the fluid move faster and expands the fluid's velocity and temperature within the boundary layer region. Also, the thickness of the thermal and momentum boundary plates is stronger in the micro-channel as the internal heat source/sink parameter increases.

Figure 4 explains the action of the Darcy porosity parameter on the fluid velocity. It is clear from this figure that the velocity fluid is propelled as the porosity parameter is increased. Further, by uplifting the permeability of the porous medium, the frictional force decays; as a result, the velocity gradient of the fluid is encouraged.

Figure 5 showcases the function of MHD on the velocity gradient. The pattern demonstrates a decrease in the fluid flow as the magnetic field intensity increases. This is so attributable to the Lorentz force, which appears when a magnetic field produces an electrically conducting fluid and a drag force is created. As a result, the fluid movement dwindle near the plate so that the Lorentz force consequently peters out when the fluid comes to rest.

coefficient versus the Navier slip effect. It is demonstrated from figure 6a that at the wall (y =

0), the rate of heat transfer decays for mounting level of heat absorption parameter while a counter attribute happens at the wall (y = 1) as displayed in figure 6b. However, on the hand, it is noteworthy to report that growing values of heat generation parameter speed up the fluid motion at y = 1 as shown in figure 6b, whereas a reverse case is recorded at the lower plate.

Figures 7a and 7b demonstrate the variation of heat sink and source parameter on the skin friction against the Navier slip effect. As shown in figure 7a, increasing the heat emission parameter weakens the drag force at y = 0, while increasing it at y = 0

1. The implications of mounting the heat generation parameter is seen to lowers the shear stress at y=0 but a reverse case occurs at y=1. The permeability effect on the frictional force at both plates is sketched against Newtonian heating parameter in Figures 8a and 8b. It can be seen that uplifting the values of the permeability parameter strengthens the frictional force at the plate (y=0), whereas an opposite trend happens at y=1. Figure 9a and 9b display the function of magnetic field on the shear stress. It was discovered that MHD has a diminishing influence on the skin friction at y=0, while a counter behavior is witnessed at y=1.

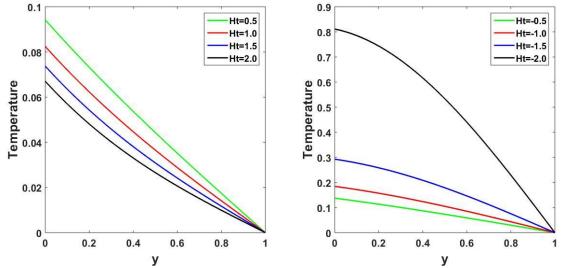


Figure 2. Action of (a) Heat absorption and (b) Heat generation on the Temperature distribution

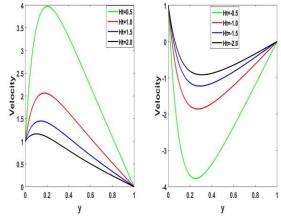


Figure 3. Action of (a) Heat absorption and (b) Heat generation on the Velocity distribution

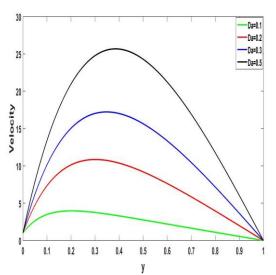


Figure 4. Action of Darcy number on the Velocity

distribution

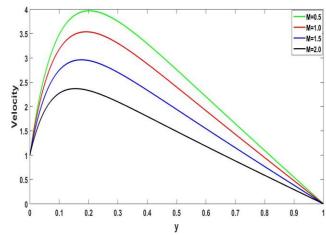


Figure 5. Action of Magnetic number on the Velocity distribution

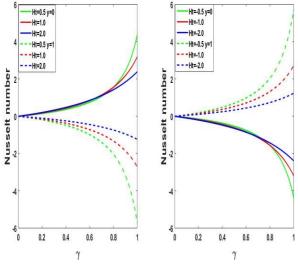


Figure 6. Action of (a) Heat absorption and (b) Heat generation on the Nusselt number at both plates

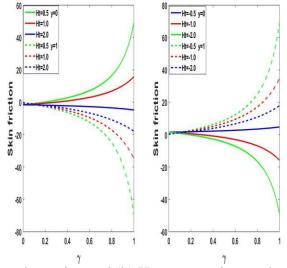


Figure 7. Action of (a) Heat absorption and (b) Heat generation on the Skin friction at both plates

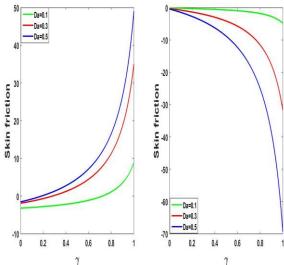


Figure 8. Action of Darcy number on the Skin friction at (a) at y = 0 and (b) at y = 1

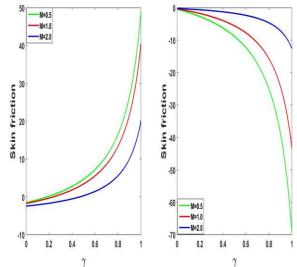


Figure 9. Action of Magnetic number on the Skin friction at (a) at y = 0 and (b) at y = 1

Validation of Results

The work of Zulkifree *et al.* (2019) is retrieved successfully by setting H_t and M to be zero and Da to be 1000, so that the term $\frac{1}{Da}$ disappears. The validation confirms an excellent agreement between the present research and their work. Table 1 presents the numerical computations of the comparison between the present analysis and their work.

Table 1: Numerical comparison of the current study on the temperature and velocity profiles with the work of Zulkiflee *et al.* (2019), for $\gamma = 0.01$, setting Da to be 1000 and when $H_t = M = 0$.

	Zulkiflee et al.		Present work	
	(2019)			
Y	$\theta(Y)$	U(Y)	$\theta(Y)$	U(Y)
0.1	0.0091	0.9003	0.0091	0.9003
0.2	0.0081	0.8006	0.0081	0.8006
0.3	0.0071	0.7007	0.0071	0.7007
0.4	0.0061	0.6006	0.0061	0.6006
0.5	0.0051	0.5006	0.0051	0.5006

CONCLUSION

The effect of heat sink or source on the steady hydromagnetic flow of an electrically conducting fluid traveling upward along two parallel plate filled with porous medium has been performed under the influence of thermal Grashof parameter. A semi-analytical method was employed to determine the solutions for temperature, velocity, rate of heat transfers, and sheer stress. The impacts of controlling parameters embedded in the flow configuration are explained in detail with the help of various graphs. Internal heat generation, absorption and permeability effects are vital in most lubrication industries. The findings from this study can be applicable to engineering and technological industries for geothermal systems, porous solids drying, gas drainage, plasma physics, gas turbines, fossil fuel combustion, food processing industries and so on. The summary of the main findings from this research is highlighted below:

- i. Taking $H_t < 0$, which denotes heat generation, the fluid velocity and the temperature distributions respectively are observed to significantly improve, whereas for $H_t > 0$ representing heat absorption, a reverse behavior is noticed.
- ii. The velocity gradient peters out upon raising the levels of the magnetic parameter due to the Lorentz forces, which manifest under the MHD effect.
- iii. Upon increasing the Darcy permeability parameter, drag forces diminish at y = 0, whereas a growing effect is noticeable at the upper plate.
- iv. Increasing the heat source parameter profoundly improves the drag force and heat transfer rate,

- respectively at the plate y = 1, while the opposite behavior is recorded at y = 0. However, converse effects are all observed for rising levels of heat sink parameter for the both plates.
- v. By raising the values of magnetic number, the skin friction is opposed at the heated plate, whereas at the cold plate, an opposite trend is recorded.
- vi. In the future, this research will be extended to study the effect of exothermic chemical reactions.

REFERENCES

- Ajibade, A. O., Umar A. M. and Kabir T. M. (2021). An analytical study on effects of viscous dissipation and suction/injection on a steady mhd natural convection couette flow of heat generating/absorbing fluid, *Advances in Mechanical Engineering*, 13(5), 1–12
- Ali, A. O., Makinde, O. D. and Nkansah-Gyekye, Y. (2016). Numerical study of unsteady MHD Couette flow and heat transfer of nanofluids in a rotating system with convective cooling, *International Journal of Numerical Methods for Heat and Fluid Flow*, 26, 12-20
- Ali, Y. Rana, M. and Shoaib, M. (2017). Magneto-hydrodynamic three-dimensional Couette flow of a Maxwell fluid with periodic injection/suction, *Mathematical Problems in Engineering*, vol. 2017, Article ID 1859693, 19 pages.
- Al-Subaie, M. A. and Chamkha, A. J. (2004). Transient natural convection flow of a particulate suspension through a vertical channel, *Heat and Mass Transfer*, 40(9): 707–713.
- Anyanwu, E. O. Olayiwola, R. O. Shehu, M. D. and Lawal, A. (2020). Radiativee1ects on unsteady MHD Couette flow through a parallel plate with constant pressure gradient, *Asian Research Journal of Mathematics*, 1–19.
- Barikbin, Z. Ellahi, R. and Abbasbandy, S. (2014). The Ritz-Galerkin method for MHD Couette flow of non-Newtonian fluid, https://www.sid.ir/en/journal/ViewPaper.aspx?id 389767.
- Beg, O. A. Ghosh, S. K. and Narahari, M. (2010). Mathematical modeling of oscillatory MHD Couette 50w in a rotating highly permeable medium permeated by an oblique magnetic field, *Chemical Engineering Communications*, 198(2), 235–25.
- Chamkha, A. J, Rashad A. M, Mansour M. A., Armaghani T. and Ghalambaz M. (2017). Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu–water nanofluid in a lid-driven square porous enclosure with partial slip. *Physics in Fluids*, 29(5).
- Chu, Y., Aziz S., Ijaz K. M., Khan S. U., Nazeer, M., Ahmad I. and Tlili, I. (2020). Nonlinear radiative bioconvection flow of Maxwell nanofluid configured by bidirectional oscillatory moving surface with heat generation phenomenon, *PhysicaScriptavol*95(10).https://doi.org/10.1088/1402-4896/abb7a9
- Das, M., Mahato, R. and Nandkeolyar, R. (2015). Newtonian heating effect on unsteady hydromagnetic asson fluid flow past a flat plate with heat and mass transfer, *Alexandria Engineering Journal*, 54(4), 871–879.
- Gambo, D., Taiwo S. Y., Samuel A. O., James D. K. and Gambo J. J. (2021). Analysis of free convective hydromagnetic flow of heat generating/absorbing fluid in an annulus with isothermal and adiabatic boundaries. *Partial Differential Equations in Applied Mathematics*. https://doi.org/10.1016/j.padiff.2021.100080
- Hamza, M. M. (2016). Free convection slip flow of an exothermic fluid in a convectively heated vertical channel, *Ain Shams Engineering journal*, http://dx.doi.org/10.1016/j.asej.2016.08.011
- Hayat, T., Hussain, Z., Farooq, M. and Alsaedi, A. (2018). Magnetohydrodynamic flow of powelleyring fluid by a stretching cylinder with Newtonian heating, *Thermal Science*, 22(1B), 371–382.
- Hussain, Z. Hussain, S. Kong, T. and Liu, Z. (2018). Instability of MHD Couette flow of an electrically

- conducting fluid, AIPAdvances, 8(10), Article ID 105209.
- Jha, B. K. Aina B. and Ajiya A. T. (2014). MHD natural convection flow in a vertical parallel plate microchannel, *AinShams EngineeringJournal*, **6**, 289-295.
- Jha, B. K. Isah, B. and Uwanta, I. (2015). Unsteady MHD free convective Couette 5ow between vertical porous plates with thermal radiation, *Journal of King Saud University Science*, 27(4), 338–348.
- Job, V. M. and Gunakala, S. R. (2016). Unsteady MHD free convection Couette flow between two vertical permeable plates in the presence of thermal radiation using galerkin's finite element method, *International Journal of Mechanical Engineering*, 2, 99–110.
- Joseph, K. Daniel, S. and Joseph, G. (2014). Unsteady MHD Couette flow between two infinite parallel porous plates in an inclined magnetic field with heat transfer, *International Journal of Mathematics and Statistics Invention*, 2, 103–110.
- Mng'ang'a J. (2023). Effects of Chemical Reaction and Joule Heating on MHD Generalized Couette Flow between Two Parallel Vertical Porous Plates with Induced Magnetic Field and Newtonian heating/cooling, *International Journal of Mathematics and Mathematical Sciences*, Volume 2023, Article ID 9134811, 14 pageshttps://doi.org/10.1155/2023/9134811
- Khan, D., Kumam, P. A., Rahman*et al.* (2022). The outcome of Newtonian heating on Couette flow of viscoelastic dusty 5uid along with the heat transfer in a rotating frame: second law analysis, *Heliyon*, 8(9), Article ID e10538.
- Lesnic, D., Ingham, D., Pop, I. and Storr, C. (2004). Free convection boundary-layer flow above a nearly horizontal surface in a porous medium with Newtonian heating, *Heat and Mass Transfer*, 40(9), 665–672.
- Merkin, J.H. (1994). Natural convection boundary layer flow on a vertical surface with Newtonian heating, *International Journal for Heat and Fluid Flow*, 15, 392-398.
- Mosayebidorcheh, S. Mosayebidorcheh, T. Hatami, M. Ganji, D. D. and Mirmohammadsadeghi, S. (2015). Investigation of transient MHD Couette 5ow and heat transfer of dusty fluid with temperature-dependent properties, *Journal of AppliedFluid Mechanics*, 8(4), 921–929.
- Narahari, M. (2012). Transient free convection flow between long vertical parallel plates with ramped wall temperature at one boundary in the presence of thermal radiation and constant mass diffusion. *Meccanica*, 47(8), 1961–1976.
- Ngiangia, A. T. and Okechukwu, A. (2016). Influence of variable electroconductivity and radiation on MHD Couette flow, *World Scientific News*, 47, 241–253.
- Ojemeri, G. and Onwubuya I. O. (2023). Analysis of mixed convection flow on Arrhenius-controlled heat generating/absorbing fluid in a superhydrophobicmicrochannel: A semi-analytical approach, *Dutse Journal of Pure and Applied Sciences*, **9**, 344-357.
- Ojemeri, G. and Hamza, M. M. (2022). Heat transfer analysis of Arrhenius-controlled free convective hydromagnetic flow with heat generation/absorption effect in a micro-channel, *Alexandria Eng. J.*, **61**, 12797-12811.
- Ojemeri, G., Onwubuya I. O., Omokhuale, E., Hussaini A. and Shuaibu, A. (2024). Analytical

- investigation of Arrhenius kinetics with heat source/sink impacts along a heated superhydrophobic microchannel, *UMYU Scientifica*, 3(1), 61-71.
- Oni, M. O. and Jha B. K. (2019). Heat generation/absorption effect on natural convection flow in a vertical annulus with time-periodic boundary conditions. Journal of Aircraft and Spacecraft technology, 3(1), 183-196. https://doi.org/10.3844/jastsp.2019.183.196
- Qayyum, S., Hayat, T., Shehzad, S. A. and Alsaedi, A. (2017). Effects of a chemical reaction on magnetohydrodynamic (mhd) stagnation point flow of walters-b nanofluid with Newtonian heat and mass conditions, *Nuclear Engineering and Technology*, 49(8), 1636–1644.
- Rajput, U. and Sahu, P. (2011). Combined effects of chemical reactions and heat generation/absorption on unsteady transient free convection mhd flow between two long vertical parallel plates through a porous medium with constant temperature and mass diffusion, *Elixir Appl. Math.* 39, 4855–4859.
- Rajput, U. and Sahu, P. (2011). Transient free convection mhd flow between two long vertical parallel plates with constant temperature and variable mass diffusion, *Journal of Math. Analysis*, 34(5), 1665–1671.
- Raju, R. S., Jithender R., G. Rao, J. A. and Rashidi, M. M. (2016): Thermal diffusion and diffusion thermo effects on an unsteady heat and mass transfer magneto-hydrodynamic natural convection Couette flow using FEM, *Journal of computational Design and Engineering*, 3(4), 349–362.
- Shehzad, S., Hayat, T., Alhuthali, M. and Asghar, S. (2014). Mhd three-dimensional flow of Jeffrey fluid with Newtonian heating, *Journal of Central South University*, 21(4), 1428–1433.
- Singh, A. and Sarveshanand M. (2015). Magnetohydrodynamic free convection between vertical parallel porous plates in the presence of induced magnetic field, *SpringerPlus*, 4(1), 333.
- Sreekala, L. and Reddy, E. K. (2014). Steady MHD Couette 5ow of an incompressible viscous fluid through a porous medium between two infinite parallel plates under the effect of inclined magnetic field, *International Journal of Engineering Science*, 3, 18–37.
- Umavathi, J. C. Liu, I. C. and Kumar, J. P. (2010). Magneto-hydrodynamic Poiseuille-Couette flow and heat transfer in an inclined channel, *Journal of Mechanics*, 26(4), 525–532.
- Zhao, T., Khan M. and Chu Y. (2020). Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks, *Math. Method Applied Sci*,https://doi.org/10.1002/mma.7310
- Zin, N. A. M., Khan, I. and Shafie, S. (2018). Exact and numerical solutions for unsteady heat and mass transfer problem of Jeffrey fluid with mhd and Newtonian heating effects, *Neural Computing and Applications*, 30(11), 3491–3507.
- Zulkiflee, F., Mohamad A. Q., Shafie S. and Khan A. (2019). Unsteady Free Convection Flow between Two Vertical Parallel Plates with Newtonian Heating, *Matematika MJIAM*, 35(2), 117–127.