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Abstract

One of the most important roles of a software engineer is the software quality assurance (SQA) activities.
The major activities of software engineers are to release defect-free software to end consumers. However,
software programs contain large and delicately correlated software metrics that are found in different
software modules. These made the deployment of the software defect prediction model more complex.
The objective of this research is to examine the consistency and correlation of subsets of metrics that are
generated by feature selection techniques on 10 publicly available defect data sets. The research found
that the correlation-based feature selection approach of the feature selection technique produced the best
prediction accuracy of 85.20% with a 0.87 F1 score measure and a 0.92 AUC. The consistency of a subset
of metrics was measured by the percentage of metrics that were consistently selected across different
training samples from the same dataset. The best way to choose a feature selection technique is to
experiment with different techniques and evaluate their performance on a specific dataset and machine
learning model. The research findings have shown that the best method was Correlation-based feature
selection (CFS), which provided the highest accuracy, F1 score, and AUC and can be used to improve the
performance of software defect prediction models by reducing the computational complexity of software
metrics selection. The feature selection technique-based approach for software defect prediction has
shown significant enhancement, and we recommend that future studies perform software defect model
construction using different datasets to justify the study.

Keywords: Dimensionality Reduction Techniques, Software Defect Prediction, Software Metrics,
Correlated Metrics, Computational Complexity

Software engineers uses software metrics to
estimate software development time and evaluate
the overall qualities of the program (Fenton et al.,
1999). It was applied to enhance the defect
prediction model's software features. To extract the
properties of different software assets, such a file,

INTRODUCTION

Feature reduction techniques was used as a data
pre-processing technique to find a candidate subset
of software metrics prior to developing a software
defect prediction model (Menzies, 2018). In
software quality assurance (SQA), its algorithms

have been thoroughly studied to remove redundant
software metrics. According to Shepperd et al.
(2013), software metrics are those that have no
impact on the software defect model's overall
performance.

class, or module, software metrics are widely
utilized. There are condensed and more
complicated software measurements. The Lines of
Code (LOC) metric is a commonly used tool in
software quality assurance (SQA) to calculate the
total number of lines of code in a software instance.
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A coding error is referred to as a software flaw.
These errors may result from software products that
fall short of end users' expectations or from other
unmet software requirements. The software
product could display an unanticipated behavior as
a result of the defect, leading to a complete program
failure (Abubakar et al., 2021). The essential ideas
that define the software defect are as follows:

a. Defect is a bug that results from a programming
error that becomes incorporated into an
application. A software product is deemed
defective if its output deviates from the anticipated
outcome specified in the software specification
document.

b. A software product may be deemed defective if
it is unable to fulfill the needs or expectations of the
end user. This unhappiness could result from a
mistake made in the product's development process
or in its procedures.

Models for predicting software defects played a
crucial role in developing SQA initiatives.
Software metrics are used to train software defect
prediction models, which then identify the software
modules that are prone to defects (Tantitthamavorn
et al., 2018).

These two crucial tasks are carried out by the
software defect prediction model (Akiyama, 1971)
and are explained below.

Software modules that are likely to have issues are
identified using software defect prediction models
(Akiyama, 1971). Therefore, in order to effectively
devote specific resources to the modules that are
most likely to be defective, SQA engineers employ
models to analyze the settings (D'Ambros et
al.2010).

To evaluate the impact of different software metrics
on software modules that are prone to defects,
software defect models are employed (Cataldo et
al., 2009). To prevent past mistakes related to
software modules that are prone to defects, the
SQA team makes use of the intuition obtained from
software defect prediction models (MciIntosh et al.,
2014).

Defect prediction models have become more
widely used in practice throughout the past ten
years. Defect prediction technique has recently
been adopted by Bell Labs, AT&T, Turkish

Telecommunication, Microsoft Research, Google,
Blackberry, Cisco, IBM, and Sony Mobile.
According to Tantitthamavorn et al. (2018), these
businesses have effectively incorporated defect
prediction techniques and gained insightful
knowledge.

One important method in the realm of software
defect prediction is dimensionality reduction. By
lowering the amount of input variables, it aids in
the improvement of prediction models, enhancing
interpretability,  performance, and reducing
overfitting. Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and feature
selection techniques are common approaches for
reducing dimensionality. However, practitioners
find it difficult to select the best appropriate
technique from among them. This study examines
how well five distinct dimension reduction
strategies perform in a software defect prediction
model.

RELATED WORKS

In  software  defect prediction  (SDP),
dimensionality reduction has emerged as a key
strategy for improving the precision and
effectiveness of predictive models. To reduce
problems that can negatively affect the
performance of machine learning algorithms, such
as overfitting, high computing cost, and the curse
of dimensionality, this procedure entails lowering
the amount of input variables (Zhang et al.,2020).

Techniques for reducing dimensionality aid in
streamlining the data structure, making it easier to
handle and understand. Repetitive and unnecessary
features are frequently present in high-dimensional
data, which can make it difficult to see the
underlying patterns required for precise fault
prediction. Computational complexity of software
defect prediction model can be decreased, and its
performance can be enhanced by lowering the
dimensionality (Zhang et al.,2020).

Das (2022) investigated the benefits and drawbacks
of both filter-based and wrapper-based feature
selection for feature selection and proposed a
hybrid algorithm that employs boosting and
incorporates some of the features of wrapper
methods into the filter method for feature selection.
The study did well in investigating the differences
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between filter and wrapper, resulting in a hybrid
algorithm, and the results showed that wrapper is
faster than filter feature selection techniques,
despite the fact that the embedded method is faster
than both filter and wrapper methods.

Also lai and Roper (2019) conducted a systematic
review of the use of feature selection strategies in
software quality prediction. The authors discovered
that feature selection strategies can increase the
performance of software quality prediction models,
with filter-based methods being the most widely
utilized.

Kakkar and Jain's (2020) research, titled Feature
Selection in Software Defect Prediction: A
Comparative Study, aimed to provide a framework
for defect prediction based on five classifiers. The
authors discovered that feature selection can
increase the performance of defect prediction
models, and the Relief F algorithm was the most
effective feature selection method.

Liu et al. (2021) paper, "FECAR: A Feature
Selection Framework for Software Defect
Prediction," introduced a feature clustering and
ranking technique (FECAR) and an FF-correlation
metric for prediction. The authors discovered that
FECAR performed better than other feature
selection strategies in terms of prediction accuracy.
Thirumoorthy and Britto's (2022) paper, "A feature
selection model for software defect prediction
using the binary Rao optimization algorithm,”
proposed a hybrid feature selection (filter-wrapper)
approach based on the multi-criteria decision
making (MCDM) method and the Rao optimization
algorithm. The authors discovered that their
strategy outperformed previous feature selection
techniques in terms of predictive accuracy.

Work of Balogun et al. (2019) titled: Performance
Analysis of Feature Selection Methods in Software
Defect Prediction: A Search Method Approach,
analyzed the performance of different feature
selection methods in software defect prediction.
The authors found that Consistency Feature Subset
Selection based on Best First Search had the best
influence on the prediction models.

Balogun et al. (2021) study, Software Defect
Prediction Using Wrapper Feature Selection Based
on Dynamic Re-Ranking Strategy, offered a
wrapper feature selection approach based on a

dynamic re-ranking strategy. The authors
discovered that their strategy outperformed
previous feature selection techniques in terms of
predictive accuracy.

Abubakar et al. (2020) examined the fundamental
feature selection methods for software defect
prediction models and their domain applicability.
When analyzing the performance of filter, wrapper,
and embedding feature selection strategies, Support
Vector Machines with Recursive Feature
Elimination were used for both Logistic Regression
and Random Forest. The researchers propose
employing embedded feature selection approaches
to correlate a subset of software metrics.

3. MATERIALSANDMETHOD
In order to test the model, we used a feature

selection technique-based method for software
defect prediction on ten publicly accessible defect
datasets. A rudimentary learner was implemented
utilizing more sophisticated methods, such as J48,
while model trees will be utilized to anticipate
problems. The experiment is carried out in Python
with the help of Anaconda Navigator.

1. Data extraction

In the research, the datasets were mined from
different repositories and open-source domains
after critical analysis and applying criteria in
selecting them; their descriptions are shown in
Table 1.
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Table 1: The studied datasets

Dataset Modules Metrics Defective EPYV AUCir AUCgr
Count Ratio %

Xalan2.6 889 22 45 21 0.79 0.86
Debug 1,165 18 27 15 0.72 0.83
34
JDT 1,097 17 24 14  0.81 0.81
Mylyn 1,952 17 17 16 0.78 0.76
Platform 6,989 36 18 30 0.82 0.82
2
Platform 8,788 36 16 27  0.77 0.72
2.1
Platform 11,593 36 14 49  0.79 0.85
3
SWT 3.4 1,485 19 48 38 0.87 0.95
Prop 1 18,471 23 17 137 0.75 0.76
Prop2 23,014 28 13 122 0.71 0.85

Guyon and Elisseeff (2003) define the three stages of

selecting the optimal feature sets as follows:
i. Classification of input datasets
ii. Calculating feature weight and

iii. The minimal weight feature is removed in order to
gain feature ranking.

2. The experimental steps are shown as follows:

(a) The Input Datasets

Training sample X, = [x1, X3 ... .. ... XIT .o e
Category Y = [y4, V2 v e .. 12 R 1 1
Current feature sets S = [1,2,3 ......... n] ...iii
List of Sorted Featuresrg = ] vee cov vee o iD

(b) Sorted Features
The iteration process is continuing until all the
featuresare sorteds =[ J.ooiiiei i 1

The new training sample is generated by applying
the matrix by retaining the rest of the features X =

X0(S) or et e e e et et et e e e e 2
Training the classifier a=SVM —
train(X,Y)..3

Weight calculation =
YKakYkXk ... ... ..o oo v cei v e vee e 4
Standard for sorting C; = (W2 ... ...... 5

Minimum feature weight f=
arg. min(c) ... ... ..o cee vve cvv vee vee e 10n . 6
The updated feature sorted list r=
[SUOT] e v et v e v e T

Removing the feature with minimum weight § =
s(1: -1, f1: length(s)) ...... ... ... 8

(c) Sorted Feature List Output r.
From each loop, the feature with minimum weight
(Wi)2 will be removed.

Dimensionality Reduction Techniques

a. Principal Component Analysis (PCA)

An approach that is frequently used in the field of
software defect prediction for dimensionality
reduction is principal component analysis, or PCA.
It entails converting the original dataset into a
principle components set of linearly uncorrelated
variables, which helps minimize the dimensionality
of the data while preserving the majority of its
variance.

PCA Implementation

Covariance Matrix Computation: In order to
determine how the variables are connected, we
computed the covariance matrix of the normalized
dataset using Eigenvalue and Eigenvector
Calculations: We determined the covariance
matrix's eigenvalues and eigenvectors. The
direction of the components is shown by the
eigenvectors, while the eigenvalues show how
much variance is explained by each primary
component. Finally, we sort and choose Principal
Components by selecting the top k eigenvectors
that match the biggest eigenvalues and sorting the
eigenvalues in descending order. The primary
components are made up of these eigenvectors.
Dimensionality Reduction was obtained by
transformation where we multiply the original data
matrix by the chosen eigenvectors to transform the
original dataset into the new principal component
space.

b. Confirmatory Factor Analysis (CFA)

Is statistical method used to validate the factor
structure of a collection of observed data. CFA can
assist in verifying the underlying structure of
software metrics or characteristics that are used to
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predict software faults when used to dimensionality
reduction in software defect prediction.

To estimate the CFA model's parameters, we used
the lavaan package in conjunction with a statistical
software program from R. Determining the factor
loadings, variances, and covariances are steps in the
estimate process. We determine each observation's
factor scores. The original dataset's reduced
dimensions are reflected in these scores. Lastly,
based on factor loadings, we either reduced the
number of observed variables or chose a subset of
the most important components.

c. Recursive Feature Elimination

Using every feature, we train the model on the
training set. Next, using the model's significance
scores such as the coefficients from an SVM or the
feature importance from a random forest, we rank
the features. We remove the least significant
features iteratively. We removed a predetermined
number or percentage of features with the lowest
significance scores in each iteration. We applied
cross-validation on the training set to assess the
model's performance at the end of each iteration.
When the model performance begins to deteriorate
or reaches a plateau, we finally stop the iteration,
signaling that the remaining features are critical for
prediction.

d. Information gain

In machine learning, information gain (IG) is a
widely utilized feature selection technique,
especially when software fault prediction is
involved. By choosing the most informative
features, it aids in reducing the dimensionality of
the dataset, enhancing model performance and
lowering computing complexity.

We use min-max normalization to normalize the
numerical features and mean imputation to handle
the missing values. To extract measures such lines
of code, code churn, and cyclomatic complexity,
the feature extraction technique was used. By
calculating the entropy and conditional entropy for
each characteristic, we can determine the
information gained. We choose the best features
based on their Information Gain ratings. Lastly, we
use SVM and Random Forests to train the model on
a subset of features.

e. Chi-Squared Test

It is a statistical technique that reduces
dimensionality by choosing features that are most
pertinent to the target variables. The Chi-Squared
test is applied for feature selection in the context of
software defect prediction, as explained in this
methodology.

We determined which possible characteristics, or
independent variables, could affect software flaws,
or dependent variables. We define the target
variable, which is usually a binary variable that
shows whether a fault is present or not by
contributing modules that are either (0) non-faulty
or (1) defective. We use the Chi-Squared test to
determine how relevant each characteristic is to the
target variable. We choose features whose p-values
are smaller than a predetermined significance level
(e.g., 0.05), which means that the feature is
important to the target variable and the null
hypothesis can be rejected. Only the chosen
features are kept for additional examination. Lastly,
we construct a smaller dataset with just the
attributes that the Chi-Squared test was able to pass.

4. RESULT AND DISCUSSION

All the five dimensionality reduction techniques
were performed equally, with correlation-based
technique outperforming others. However, the
performance of these strategies may differ based on
the dataset and machine learning model used.
Figure 1 depicts multiple feature selection
strategies used in predicting defective datasets,
along with the corresponding prediction accuracy
for each.

FEATURE SELECTION TECHNIQUE-BASED SDP

Chi-squared test

Information gain

Principal component analysis

Recursive feature elimination

Correlation-based feature selection
85.20%

75.00% 80.00% 85.00% 90.00% 95.00%

BAUC wFIScore " Accuracy

Figure 1: Feature selection technique-based
SDP
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Feature selection approaches are utilized in the
software defect prediction domain to improve the
predictive models’ performance through the
reduction of dataset dimensionality and the
identification of the most pertinent features. The
following table presents a summary of the
performance of different feature selection methods
using three important metrics: Area Under the
Receiver Operating Characteristic Curve (AUC),
F1 Score, and Accuracy.

Tablel: FST with percentage accuracy

Feature Selection

Technique Accuracy F1Score AUC
Correlation-based

feature selection 85.20% 0.87 0.92
Recursive feature

elimination 84.80% 0.86 0.91
Principal component

analysis 84.60% 0.85 0.9
Information gain 84.40% 0.84 0.89
Chi-squared test 84.20% 0.83 0.88

Here is a brief explanation of each of the feature
selection techniques:

Correlation-based feature selection: The best
results were obtained via correlation-based feature
selection (CFS) in terms of accuracy (85.20%), F1
score (0.87), and area under the curve (0.92). A
feature subset's value is assessed by CFS based on
each feature's unique predictive capacity as well as
the degree of redundancy between them. The
excellent performance of this method implies that
it efficiently and with minimal redundancy finds
pertinent features that have a strong correlation
with the target variable.

[J Accuracy: 85.20%
[0 F1 Score: 0.87
0 AUC: 0.92

Defect prediction models benefit greatly from
CFS's strong discriminative capacity and balance
between precision and recall, as seen by its high F1
Score and AUC.

Recursive feature elimination:

Additionally, doing well was recursive feature
elimination (RFE), with an Accuracy of 84.80%,

F1 Score of 0.86, and AUC of 0.91. Recursive
feature elimination (RFE) builds the model until the
ideal feature count is attained by progressively
eliminating the least significant features. The
iterative nature of the system, which can
occasionally result in poor feature subsets if
improperly calibrated, could be the cause of the
somewhat lower performance when compared to
CFS.

o Accuracy: 84.80%
o AUC:0.91
o F1: Score: 0.86

Although it would need additional processing
power and careful parameter tuning, RFE's robust
performance shows that it can choose features that
improve model performance.

Principal component analysis

A balanced performance was demonstrated by
Principal Component Analysis (PCA), with
accuracy of 84.60%, F1 score of 0.85, and AUC of
0.90. The original features are converted into a new
collection of uncorrelated components using PCA,
a dimensionality reduction approach, then arranged
according to how much variance they explain.
Although PCA does not choose features directly, it
can enhance model performance by producing a
condensed  representation of the  data.

o Reliability:84.60%
o F1 Score: 0.85
o AUC:0.90

PCA's relatively strong performance metrics
demonstrate how well it reduces dimensionality
while preserving the majority of the data's variance,
making it a useful method for working with high-
dimensional datasets.

Information gain:

With an Accuracy of 84.40%, F1 Score of 0.84, and
AUC of 0.89, Information Gain (IG) performed
well. Given a specific feature, IG calculates the
decrease in entropy or uncertainty in the target
variable. It is an easy-to-use and effective way to
rank features according to how relevant they are to
the desired variable.
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Accuracy: 84.40%
AUC: 0.89
F1 Score: 0.84

Information Gain performed well despite its
simplicity, demonstrating its usefulness in rapidly
finding significant elements that support predictive
performance.

Chi-squared test:

Among the procedures that were assessed, the Chi-
Squared test performed the worst, with an accuracy of
84.20%, an F1 score of 0.83, and an AUC of 0.88. By
choosing features that have a strong correlation with the
target, this statistical test evaluates the independence
between each feature and the target variable.

Accuracy: 84.20%
AUC: 0.88
F1 Score: 0.83

Even if the Chi-Squared test performed a little bit
worse, it is still a useful technique for feature
selection, especially when working with
categorical data.

CONCLUSION

The findings show that the effectiveness of
software defect prediction models can be greatly
impacted by various dimensionality reduction
techniques. The best method was found to be
correlation-based feature selection, which provided
the highest accuracy, F1 score, and AUC. Principal
component analysis and recursive feature removal
both performed well, albeit they could need
additional tweaking and processing power.

Even though they are a little less efficient than
feature-only models, information gain and the Chi-
Squared test nevertheless offer significant
advantages. These results emphasize how crucial it
is to adopt a suitable feature selection method to
improve the precision and effectiveness of software
defect prediction models. Subsequent
investigations may examine hybrid methodologies
that integrate various techniques to enhance feature
selection and model efficacy.

Here are some additional considerations for
choosing a dimensionality reduction technique:
The size of the dataset: If the dataset is large, then
a computationally extensive technique such as
principal component analysis may be necessary.

The number of features: If there are a large number
of features, then a filter-based technique such as
correlation-based feature selection may be more
efficient.

The type of machine learning model: Some feature
selection techniques are more suitable for certain
types of machine learning models than others.
Ultimately, the best way to choose a dimensionality
reduction technique is to experiment with different
techniques and evaluate their performance on a
specific dataset and machine learning model.
Future studies will venture into solving the issues
of automation of the correlation-based selection
approach, as it makes the software defect prediction
models more complex.5.
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