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Abstract 

One of the most important roles of a software engineer is the software quality assurance (SQA) activities. 
The major activities of software engineers are to release defect-free software to end consumers. However, 
software programs contain large and delicately correlated software metrics that are found in different 
software modules. These made the deployment of the software defect prediction model more complex. 
The objective of this research is to examine the consistency and correlation of subsets of metrics that are 
generated by feature selection techniques on 10 publicly available defect data sets. The research found 
that the correlation-based feature selection approach of the feature selection technique produced the best 
prediction accuracy of 85.20% with a 0.87 F1 score measure and a 0.92 AUC. The consistency of a subset 
of metrics was measured by the percentage of metrics that were consistently selected across different 
training samples from the same dataset. The best way to choose a feature selection technique is to 
experiment with different techniques and evaluate their performance on a specific dataset and machine 
learning model. The research findings have shown that the best method was Correlation-based feature 

selection (CFS), which provided the highest accuracy, F1 score, and AUC and can be used to improve the 
performance of software defect prediction models by reducing the computational complexity of software 
metrics selection. The feature selection technique-based approach for software defect prediction has 
shown significant enhancement, and we recommend that future studies perform software defect model 
construction using different datasets to justify the study. 

 

Keywords: Dimensionality Reduction Techniques, Software Defect Prediction, Software Metrics, 
Correlated Metrics, Computational Complexity 

 

INTRODUCTION 

Feature reduction techniques was used as a data 

pre-processing technique to find a candidate subset 

of software metrics prior to developing a software 
defect prediction model (Menzies, 2018). In 

software quality assurance (SQA), its algorithms 
have been thoroughly studied to remove redundant 

software metrics. According to Shepperd et al. 

(2013), software metrics are those that have no 
impact on the software defect model's overall 

performance. 
 

Software engineers uses software metrics to 

estimate software development time and evaluate 
the overall qualities of the program (Fenton et al., 

1999). It was applied to enhance the defect 

prediction model's software features. To extract the 
properties of different software assets, such a file, 

class, or module, software metrics are widely 
utilized. There are condensed and more 

complicated software measurements. The Lines of 

Code (LOC) metric is a commonly used tool in 
software quality assurance (SQA) to calculate the 

total number of lines of code in a software instance. 
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A coding error is referred to as a software flaw. 
These errors may result from software products that 

fall short of end users' expectations or from other 
unmet software requirements. The software 

product could display an unanticipated behavior as 

a result of the defect, leading to a complete program 
failure (Abubakar et al., 2021). The essential ideas 

that define the software defect are as follows: 
 

a. Defect is a bug that results from a programming 

error that becomes incorporated into an 
application. A software product is deemed 

defective if its output deviates from the anticipated 
outcome specified in the software specification 

document. 

 
b. A software product may be deemed defective if 

it is unable to fulfill the needs or expectations of the 
end user. This unhappiness could result from a 

mistake made in the product's development process 

or in its procedures. 
Models for predicting software defects played a 

crucial role in developing SQA initiatives. 
Software metrics are used to train software defect 

prediction models, which then identify the software 

modules that are prone to defects (Tantitthamavorn 
et al., 2018). 

 
These two crucial tasks are carried out by the 

software defect prediction model (Akiyama, 1971) 

and are explained below. 
Software modules that are likely to have issues are 

identified using software defect prediction models 
(Akiyama, 1971). Therefore, in order to effectively 

devote specific resources to the modules that are 

most likely to be defective, SQA engineers employ 
models to analyze the settings (D'Ambros et 

al.2010).  
To evaluate the impact of different software metrics 

on software modules that are prone to defects, 

software defect models are employed (Cataldo et 
al., 2009). To prevent past mistakes related to 

software modules that are prone to defects, the 
SQA team makes use of the intuition obtained from 

software defect prediction models (McIntosh et al., 
2014). 

Defect prediction models have become more 

widely used in practice throughout the past ten 
years. Defect prediction technique has recently 

been adopted by Bell Labs, AT&T, Turkish 

Telecommunication, Microsoft Research, Google, 

Blackberry, Cisco, IBM, and Sony Mobile. 
According to Tantitthamavorn et al. (2018), these 

businesses have effectively incorporated defect 
prediction techniques and gained insightful 

knowledge. 

 
One important method in the realm of software 

defect prediction is dimensionality reduction. By 
lowering the amount of input variables, it aids in 

the improvement of prediction models, enhancing 

interpretability, performance, and reducing 
overfitting. Principal Component Analysis (PCA), 

Linear Discriminant Analysis (LDA), and feature 
selection techniques are common approaches for 

reducing dimensionality. However, practitioners 

find it difficult to select the best appropriate 
technique from among them. This study examines 

how well five distinct dimension reduction 
strategies perform in a software defect prediction 

model. 

 

RELATED WORKS 

In software defect prediction (SDP), 
dimensionality reduction has emerged as a key 

strategy for improving the precision and 

effectiveness of predictive models. To reduce 
problems that can negatively affect the 

performance of machine learning algorithms, such 
as overfitting, high computing cost, and the curse 

of dimensionality, this procedure entails lowering 

the amount of input variables (Zhang et al.,2020). 
 

Techniques for reducing dimensionality aid in 
streamlining the data structure, making it easier to 

handle and understand. Repetitive and unnecessary 

features are frequently present in high-dimensional 
data, which can make it difficult to see the 

underlying patterns required for precise fault 
prediction. Computational complexity of software 

defect prediction model can be decreased, and its 

performance can be enhanced by lowering the 
dimensionality (Zhang et al.,2020). 

 
Das (2022) investigated the benefits and drawbacks 

of both filter-based and wrapper-based feature 
selection for feature selection and proposed a 

hybrid algorithm that employs boosting and 

incorporates some of the features of wrapper 
methods into the filter method for feature selection. 

The study did well in investigating the differences 
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between filter and wrapper, resulting in a hybrid 

algorithm, and the results showed that wrapper is 
faster than filter feature selection techniques, 

despite the fact that the embedded method is faster 
than both filter and wrapper methods. 

 

Also lai and Roper (2019) conducted a systematic 
review of the use of feature selection strategies in 

software quality prediction. The authors discovered 
that feature selection strategies can increase the 

performance of software quality prediction models, 

with filter-based methods being the most widely 
utilized. 

Kakkar and Jain's (2020) research, titled Feature 
Selection in Software Defect Prediction: A 

Comparative Study, aimed to provide a framework 

for defect prediction based on five classifiers. The 
authors discovered that feature selection can 

increase the performance of defect prediction 
models, and the Relief F algorithm was the most 

effective feature selection method. 

 
Liu et al. (2021) paper, "FECAR: A Feature 

Selection Framework for Software Defect 
Prediction," introduced a feature clustering and 

ranking technique (FECAR) and an FF-correlation 

metric for prediction. The authors discovered that 
FECAR performed better than other feature 

selection strategies in terms of prediction accuracy. 
Thirumoorthy and Britto's (2022) paper, "A feature 

selection model for software defect prediction 

using the binary Rao optimization algorithm," 
proposed a hybrid feature selection (filter-wrapper) 

approach based on the multi-criteria decision 
making (MCDM) method and the Rao optimization 

algorithm. The authors discovered that their 

strategy outperformed previous feature selection 
techniques in terms of predictive accuracy. 

 
Work of Balogun et al. (2019) titled: Performance 

Analysis of Feature Selection Methods in Software 

Defect Prediction: A Search Method Approach, 
analyzed the performance of different feature 

selection methods in software defect prediction. 
The authors found that Consistency Feature Subset 

Selection based on Best First Search had the best 
influence on the prediction models. 

Balogun et al. (2021) study, Software Defect 

Prediction Using Wrapper Feature Selection Based 
on Dynamic Re-Ranking Strategy, offered a 

wrapper feature selection approach based on a 

dynamic re-ranking strategy. The authors 

discovered that their strategy outperformed 
previous feature selection techniques in terms of 

predictive accuracy. 
 

 

Abubakar et al. (2020) examined the fundamental 
feature selection methods for software defect 
prediction models and their domain applicability. 
When analyzing the performance of filter, wrapper, 
and embedding feature selection strategies, Support 

Vector Machines with Recursive Feature 
Elimination were used for both Logistic Regression 
and Random Forest. The researchers propose 
employing embedded feature selection approaches 
to correlate a subset of software metrics. 

 
3. MATERIALSANDMETHOD 
In order to test the model, we used a feature 

selection technique-based method for software 

defect prediction on ten publicly accessible defect 

datasets. A rudimentary learner was implemented 

utilizing more sophisticated methods, such as J48, 

while model trees will be utilized to anticipate 

problems. The experiment is carried out in Python 

with the help of Anaconda Navigator. 

1. Data extraction 
In the research, the datasets were mined from 

different repositories and open-source domains 

after critical analysis and applying criteria in 
selecting them; their descriptions are shown in 

Table 1. 
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Table 1: The studied datasets 

Dataset Modules 

Count 

Metrics  Defective 

Ratio % 

EPV AUCLR AUCRF 

Xalan2.6 889 22 45 21 0.79 0.86 

Debug 

3.4 

1,165 18 27 15 0.72 0.83 

JDT 1,097 17 24 14 0.81 0.81 

Mylyn 1,952 17 17 16 0.78 0.76 

Platform 

2 

6,989 36 18 30 0.82 0.82 

Platform 

2.1 

8,788 36 16 27 0.77 0.72 

Platform 

3 

11,593 36 14 49 0.79 0.85 

SWT 3.4 1,485 19 48 38 0.87 0.95 

Prop 1 18,471 23 17 137 0.75 0.76 

Prop 2 23,014 28 13 122 0.71 0.85 

 
Guyon and Elisseeff (2003) define the three stages of 
selecting the optimal feature sets as follows: 

 

i. Classification of input datasets 

ii. Calculating feature weight and 

iii. The minimal weight feature is removed in order to 

gain feature ranking. 

 

2. The experimental steps are shown as follows: 

 

(a) The Input Datasets 

Training sample𝑿𝟎 = [𝒙𝟏, 𝒙𝟐………𝒙𝒎]𝑻…… . ⅈ 
Category 𝒀 = [𝒚𝟏, 𝒚𝟐 ………𝒚𝒎]𝑻………… ⅈⅈ 
Current feature sets 𝑺 = [𝟏,𝟐, 𝟑………𝒏]… ⅈⅈⅈ 
List of Sorted Features 𝒓𝟎 = [ ]… ……………ⅈ𝒗 

 

(b) Sorted Features  

The iteration process is continuing until all the 

features are sorted 𝒔 = [ ] ………………… . 𝟏 

 
The new training sample is generated by applying 

the matrix by retaining the rest of the features 𝑿 =
𝑿𝟎(𝒔)……………………………………… . . 𝟐 
 

Training the classifier 𝜶 = 𝑺𝑽𝑴−
𝒕𝒓𝒂ⅈ𝒏(𝑿,𝒀). . 𝟑 
Weight calculation 𝑾 =
∑𝑲𝜶𝒌𝒀𝒌𝑿𝒌………………………………𝟒 

Standard for sorting  𝑪ⅈ = (𝑾ⅈ)𝟐………𝟓 

Minimum feature weight 𝒇 =
𝒂𝒓𝒈.𝒎ⅈ𝒏(𝒄)…………………………… . 𝟔 
 

The updated feature sorted list 𝒓 =
[𝑺(𝒇)𝒓]……………………………………𝟕 
 

Removing the feature with minimum weight 𝑺 =
𝒔(𝟏: −𝟏, 𝒇𝟏: 𝒍𝒆𝒏𝒈𝒕𝒉(𝒔))…………𝟖 
 

 

(c) Sorted Feature List Output r. 
From each loop, the feature with minimum weight  
(𝑊𝑖)2  will be removed. 

 

 Dimensionality Reduction Techniques 

a. Principal Component Analysis (PCA) 

An approach that is frequently used in the field of 

software defect prediction for dimensionality 
reduction is principal component analysis, or PCA. 

It entails converting the original dataset into a 
principle components set of linearly uncorrelated 
variables, which helps minimize the dimensionality 

of the data while preserving the majority of its 
variance.  

 
PCA Implementation 

Covariance Matrix Computation: In order to 

determine how the variables are connected, we 
computed the covariance matrix of the normalized 

dataset using Eigenvalue and Eigenvector 
Calculations: We determined the covariance 

matrix's eigenvalues and eigenvectors. The 
direction of the components is shown by the 
eigenvectors, while the eigenvalues show how 

much variance is explained by each primary 
component. Finally, we sort and choose Principal 

Components by selecting the top k eigenvectors 
that match the biggest eigenvalues and sorting the 
eigenvalues in descending order. The primary 

components are made up of these eigenvectors. 
Dimensionality Reduction was obtained by 

transformation where we multiply the original data 
matrix by the chosen eigenvectors to transform the 
original dataset into the new principal component 

space. 
 

b. Confirmatory Factor Analysis (CFA) 

Is statistical method used to validate the factor 

structure of a collection of observed data. CFA can 

assist in verifying the underlying structure of 
software metrics or characteristics that are used to 
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predict software faults when used to dimensionality 
reduction in software defect prediction. 

 

To estimate the CFA model's parameters, we used 
the lavaan package in conjunction with a statistical 

software program from R. Determining the factor 
loadings, variances, and covariances are steps in the 

estimate process. We determine each observation's 
factor scores. The original dataset's reduced 
dimensions are reflected in these scores. Lastly, 

based on factor loadings, we either reduced the 
number of observed variables or chose a subset of 

the most important components.  
 
c. Recursive Feature Elimination 

Using every feature, we train the model on the 

training set. Next, using the model's significance 
scores such as the coefficients from an SVM or the 
feature importance from a random forest, we rank 

the features. We remove the least significant 
features iteratively. We removed a predetermined 

number or percentage of features with the lowest 
significance scores in each iteration. We applied 
cross-validation on the training set to assess the 

model's performance at the end of each iteration. 
When the model performance begins to deteriorate 

or reaches a plateau, we finally stop the iteration, 
signaling that the remaining features are critical for 
prediction. 

d. Information gain 

In machine learning, information gain (IG) is a 
widely utilized feature selection technique, 

especially when software fault prediction is 
involved. By choosing the most informative 

features, it aids in reducing the dimensionality of 
the dataset, enhancing model performance and 
lowering computing complexity. 

 

We use min-max normalization to normalize the 
numerical features and mean imputation to handle 

the missing values. To extract measures such lines 
of code, code churn, and cyclomatic complexity, 

the feature extraction technique was used. By 
calculating the entropy and conditional entropy for 
each characteristic, we can determine the 

information gained. We choose the best features 
based on their Information Gain ratings. Lastly, we 

use SVM and Random Forests to train the model on 
a subset of features. 
 

 

e. Chi-Squared Test 

It is a statistical technique that reduces 

dimensionality by choosing features that are most 

pertinent to the target variables. The Chi-Squared 
test is applied for feature selection in the context of 
software defect prediction, as explained in this 

methodology. 
 

We determined which possible characteristics, or 

independent variables, could affect software flaws, 
or dependent variables. We define the target 

variable, which is usually a binary variable that 
shows whether a fault is present or not by 
contributing modules that are either (0) non-faulty 

or (1) defective. We use the Chi-Squared test to 
determine how relevant each characteristic is to the 

target variable. We choose features whose p-values 
are smaller than a predetermined significance level 
(e.g., 0.05), which means that the feature is 

important to the target variable and the null 
hypothesis can be rejected. Only the chosen 

features are kept for additional examination. Lastly, 
we construct a smaller dataset with just the 
attributes that the Chi-Squared test was able to pass. 

 

4. RESULT AND DISCUSSION 

All the five dimensionality reduction techniques 

were performed equally, with correlation-based 

technique outperforming others. However, the 
performance of these strategies may differ based on 

the dataset and machine learning model used. 
Figure 1 depicts multiple feature selection 

strategies used in predicting defective datasets, 

along with the corresponding prediction accuracy 
for each. 

 Figure 1: Feature selection technique-based 

SDP 
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Feature selection approaches are utilized in the 

software defect prediction domain to improve the 
predictive models' performance through the 

reduction of dataset dimensionality and the 
identification of the most pertinent features. The 

following table presents a summary of the 

performance of different feature selection methods 
using three important metrics: Area Under the 

Receiver Operating Characteristic Curve (AUC), 
F1 Score, and Accuracy. 

 

Table1: F ST wi th  perc e ntage  acc urac y  

Feature Selection 

Technique Accuracy F1 Score AUC 

Correlation-based 

feature selection 85.20% 0.87 0.92 

Recursive feature 

elimination 84.80% 0.86 0.91 

Principal component 

analysis 84.60% 0.85 0.9 

Information gain 84.40% 0.84 0.89 

Chi-squared test 84.20% 0.83 0.88 

Here is a brief explanation of each of the feature 

selection techniques: 

Correlation-based feature selection: The best 

results were obtained via correlation-based feature 

selection (CFS) in terms of accuracy (85.20%), F1 
score (0.87), and area under the curve (0.92). A 

feature subset's value is assessed by CFS based on 
each feature's unique predictive capacity as well as 

the degree of redundancy between them. The 

excellent performance of this method implies that 
it efficiently and with minimal redundancy finds 

pertinent features that have a strong correlation 
with the target variable. 

 Accuracy: 85.20% 

 F1 Score: 0.87 
 AUC: 0.92 

 
Defect prediction models benefit greatly from 

CFS's strong discriminative capacity and balance 

between precision and recall, as seen by its high F1 
Score and AUC. 

Recursive feature elimination: 
Additionally, doing well was recursive feature 

elimination (RFE), with an Accuracy of 84.80%, 

F1 Score of 0.86, and AUC of 0.91. Recursive 

feature elimination (RFE) builds the model until the 
ideal feature count is attained by progressively 

eliminating the least significant features. The 
iterative nature of the system, which can 

occasionally result in poor feature subsets if 

improperly calibrated, could be the cause of the 
somewhat lower performance when compared to 

CFS. 

 

o Accuracy: 84.80% 

o AUC: 0.91 
o F1: Score: 0.86 

Although it would need additional processing 
power and careful parameter tuning, RFE's robust 

performance shows that it can choose features that 

improve model performance. 

Principal component analysis 

A balanced performance was demonstrated by 
Principal Component Analysis (PCA), with 

accuracy of 84.60%, F1 score of 0.85, and AUC of 

0.90. The original features are converted into a new 
collection of uncorrelated components using PCA, 

a dimensionality reduction approach, then arranged 
according to how much variance they explain. 

Although PCA does not choose features directly, it 

can enhance model performance by producing a 
condensed representation of the data. 
 

o Reliability:84.60% 
o F1 Score: 0.85  

o AUC: 0.90  

PCA's relatively strong performance metrics 

demonstrate how well it reduces dimensionality 

while preserving the majority of the data's variance, 
making it a useful method for working with high-

dimensional datasets. 

Information gain: 
With an Accuracy of 84.40%, F1 Score of 0.84, and 

AUC of 0.89, Information Gain (IG) performed 
well. Given a specific feature, IG calculates the 

decrease in entropy or uncertainty in the target 
variable. It is an easy-to-use and effective way to 

rank features according to how relevant they are to 
the desired variable. 
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Accuracy: 84.40%  

AUC: 0.89 
F1 Score: 0.84 

Information Gain performed well despite its 
simplicity, demonstrating its usefulness in rapidly 

finding significant elements that support predictive 

performance. 

Chi-squared test:  

Among the procedures that were assessed, the Chi-

Squared test performed the worst, with an accuracy of 

84.20%, an F1 score of 0.83, and an AUC of 0.88. By 

choosing features that have a strong correlation with the 

target, this statistical test evaluates the independence 

between each feature and the target variable. 

 

Accuracy: 84.20%  

AUC: 0.88  

F1 Score: 0.83 
 

Even if the Chi-Squared test performed a little bit 

worse, it is still a useful technique for feature 
selection, especially when working with 

categorical data. 
 

CONCLUSION 

The findings show that the effectiveness of 

software defect prediction models can be greatly 
impacted by various dimensionality reduction 

techniques. The best method was found to be 
correlation-based feature selection, which provided 

the highest accuracy, F1 score, and AUC. Principal 

component analysis and recursive feature removal 
both performed well, albeit they could need 

additional tweaking and processing power. 
 

Even though they are a little less efficient than 

feature-only models, information gain and the Chi-
Squared test nevertheless offer significant 

advantages. These results emphasize how crucial it 
is to adopt a suitable feature selection method to 

improve the precision and effectiveness of software 

defect prediction models. Subsequent 
investigations may examine hybrid methodologies 

that integrate various techniques to enhance feature 
selection and model efficacy.  

Here are some additional considerations for 
choosing a dimensionality reduction technique: 

The size of the dataset: If the dataset is large, then 

a computationally extensive technique such as 
principal component analysis may be necessary. 

The number of features: If there are a large number 

of features, then a filter-based technique such as 
correlation-based feature selection may be more 

efficient. 
The type of machine learning model: Some feature 

selection techniques are more suitable for certain 

types of machine learning models than others. 
Ultimately, the best way to choose a dimensionality 

reduction technique is to experiment with different 
techniques and evaluate their performance on a 

specific dataset and machine learning model.  

Future studies will venture into solving the issues 
of automation of the correlation-based selection 

approach, as it makes the software defect prediction 
models more complex.5.  
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