
YJPAS Vol 1, Issue 1, Pages 213-220 ISSN: 3043-6184

Abubakar et al., 2025

 210 | PUBLICATION OF YUSUF MAITAMA SULE UNIVERSITY, KANO
 1

COMPARISONS OF DIMENSIONALITY REDUCTION TECHNIQUES FOR

SOFTWARE DEFECT PREDICTION
1Shamsuddeen M. Abubakar, 2Abdulmajid B. Umar, 3Ahmed B. Garko, 4 Zahraddeen Sufyanu,

5Abdullahi M. Ibrahim, 6Sagiru Mati and 7Mohammed K. Dauda
1,3,4,5Department of Computer Science, Faculty of Computing Federal University Dutse, Jigawa State.

2Department of Computer Science, Faculty of Computing Yusuf Mai-Tama Sule University, Kano.
6
Operational Research Center in Healthcare, Near East University, North Cyprus
7Department of Computer Science, Abubakar Tafawa Balewa (ATBU) Bauchi.

*Corresponding author’s e-mail: salsabil012@gmail.com

Abstract

One of the most important roles of a software engineer is the software quality assurance (SQA) activities.
The major activities of software engineers are to release defect-free software to end consumers. However,
software programs contain large and delicately correlated software metrics that are found in different
software modules. These made the deployment of the software defect prediction model more complex.
The objective of this research is to examine the consistency and correlation of subsets of metrics that are
generated by feature selection techniques on 10 publicly available defect data sets. The research found
that the correlation-based feature selection approach of the feature selection technique produced the best
prediction accuracy of 85.20% with a 0.87 F1 score measure and a 0.92 AUC. The consistency of a subset
of metrics was measured by the percentage of metrics that were consistently selected across different
training samples from the same dataset. The best way to choose a feature selection technique is to
experiment with different techniques and evaluate their performance on a specific dataset and machine
learning model. The research findings have shown that the best method was Correlation-based feature

selection (CFS), which provided the highest accuracy, F1 score, and AUC and can be used to improve the
performance of software defect prediction models by reducing the computational complexity of software
metrics selection. The feature selection technique-based approach for software defect prediction has
shown significant enhancement, and we recommend that future studies perform software defect model
construction using different datasets to justify the study.

Keywords: Dimensionality Reduction Techniques, Software Defect Prediction, Software Metrics,
Correlated Metrics, Computational Complexity

INTRODUCTION

Feature reduction techniques was used as a data

pre-processing technique to find a candidate subset

of software metrics prior to developing a software
defect prediction model (Menzies, 2018). In

software quality assurance (SQA), its algorithms
have been thoroughly studied to remove redundant

software metrics. According to Shepperd et al.

(2013), software metrics are those that have no
impact on the software defect model's overall

performance.

Software engineers uses software metrics to

estimate software development time and evaluate
the overall qualities of the program (Fenton et al.,

1999). It was applied to enhance the defect

prediction model's software features. To extract the
properties of different software assets, such a file,

class, or module, software metrics are widely
utilized. There are condensed and more

complicated software measurements. The Lines of

Code (LOC) metric is a commonly used tool in
software quality assurance (SQA) to calculate the

total number of lines of code in a software instance.

mailto:salsabil012@gmail.com

YJPAS Vol 1, Issue 1, Pages 213-220 ISSN: 3043-6184

Abubakar et al., 2025

 210 | PUBLICATION OF YUSUF MAITAMA SULE UNIVERSITY, KANO
 1

A coding error is referred to as a software flaw.
These errors may result from software products that

fall short of end users' expectations or from other
unmet software requirements. The software

product could display an unanticipated behavior as

a result of the defect, leading to a complete program
failure (Abubakar et al., 2021). The essential ideas

that define the software defect are as follows:

a. Defect is a bug that results from a programming

error that becomes incorporated into an
application. A software product is deemed

defective if its output deviates from the anticipated
outcome specified in the software specification

document.

b. A software product may be deemed defective if

it is unable to fulfill the needs or expectations of the
end user. This unhappiness could result from a

mistake made in the product's development process

or in its procedures.
Models for predicting software defects played a

crucial role in developing SQA initiatives.
Software metrics are used to train software defect

prediction models, which then identify the software

modules that are prone to defects (Tantitthamavorn
et al., 2018).

These two crucial tasks are carried out by the

software defect prediction model (Akiyama, 1971)

and are explained below.
Software modules that are likely to have issues are

identified using software defect prediction models
(Akiyama, 1971). Therefore, in order to effectively

devote specific resources to the modules that are

most likely to be defective, SQA engineers employ
models to analyze the settings (D'Ambros et

al.2010).
To evaluate the impact of different software metrics

on software modules that are prone to defects,

software defect models are employed (Cataldo et
al., 2009). To prevent past mistakes related to

software modules that are prone to defects, the
SQA team makes use of the intuition obtained from

software defect prediction models (McIntosh et al.,
2014).

Defect prediction models have become more

widely used in practice throughout the past ten
years. Defect prediction technique has recently

been adopted by Bell Labs, AT&T, Turkish

Telecommunication, Microsoft Research, Google,

Blackberry, Cisco, IBM, and Sony Mobile.
According to Tantitthamavorn et al. (2018), these

businesses have effectively incorporated defect
prediction techniques and gained insightful

knowledge.

One important method in the realm of software

defect prediction is dimensionality reduction. By
lowering the amount of input variables, it aids in

the improvement of prediction models, enhancing

interpretability, performance, and reducing
overfitting. Principal Component Analysis (PCA),

Linear Discriminant Analysis (LDA), and feature
selection techniques are common approaches for

reducing dimensionality. However, practitioners

find it difficult to select the best appropriate
technique from among them. This study examines

how well five distinct dimension reduction
strategies perform in a software defect prediction

model.

RELATED WORKS

In software defect prediction (SDP),
dimensionality reduction has emerged as a key

strategy for improving the precision and

effectiveness of predictive models. To reduce
problems that can negatively affect the

performance of machine learning algorithms, such
as overfitting, high computing cost, and the curse

of dimensionality, this procedure entails lowering

the amount of input variables (Zhang et al.,2020).

Techniques for reducing dimensionality aid in
streamlining the data structure, making it easier to

handle and understand. Repetitive and unnecessary

features are frequently present in high-dimensional
data, which can make it difficult to see the

underlying patterns required for precise fault
prediction. Computational complexity of software

defect prediction model can be decreased, and its

performance can be enhanced by lowering the
dimensionality (Zhang et al.,2020).

Das (2022) investigated the benefits and drawbacks

of both filter-based and wrapper-based feature
selection for feature selection and proposed a

hybrid algorithm that employs boosting and

incorporates some of the features of wrapper
methods into the filter method for feature selection.

The study did well in investigating the differences

YJPAS Vol 1, Issue 1, Pages 213-220 ISSN: 3043-6184

Abubakar et al., 2025

 211 | PUBLICATION OF YUSUF MAITAMA SULE UNIVERSITY, KANO
 1

between filter and wrapper, resulting in a hybrid

algorithm, and the results showed that wrapper is
faster than filter feature selection techniques,

despite the fact that the embedded method is faster
than both filter and wrapper methods.

Also lai and Roper (2019) conducted a systematic
review of the use of feature selection strategies in

software quality prediction. The authors discovered
that feature selection strategies can increase the

performance of software quality prediction models,

with filter-based methods being the most widely
utilized.

Kakkar and Jain's (2020) research, titled Feature
Selection in Software Defect Prediction: A

Comparative Study, aimed to provide a framework

for defect prediction based on five classifiers. The
authors discovered that feature selection can

increase the performance of defect prediction
models, and the Relief F algorithm was the most

effective feature selection method.

Liu et al. (2021) paper, "FECAR: A Feature

Selection Framework for Software Defect
Prediction," introduced a feature clustering and

ranking technique (FECAR) and an FF-correlation

metric for prediction. The authors discovered that
FECAR performed better than other feature

selection strategies in terms of prediction accuracy.
Thirumoorthy and Britto's (2022) paper, "A feature

selection model for software defect prediction

using the binary Rao optimization algorithm,"
proposed a hybrid feature selection (filter-wrapper)

approach based on the multi-criteria decision
making (MCDM) method and the Rao optimization

algorithm. The authors discovered that their

strategy outperformed previous feature selection
techniques in terms of predictive accuracy.

Work of Balogun et al. (2019) titled: Performance

Analysis of Feature Selection Methods in Software

Defect Prediction: A Search Method Approach,
analyzed the performance of different feature

selection methods in software defect prediction.
The authors found that Consistency Feature Subset

Selection based on Best First Search had the best
influence on the prediction models.

Balogun et al. (2021) study, Software Defect

Prediction Using Wrapper Feature Selection Based
on Dynamic Re-Ranking Strategy, offered a

wrapper feature selection approach based on a

dynamic re-ranking strategy. The authors

discovered that their strategy outperformed
previous feature selection techniques in terms of

predictive accuracy.

Abubakar et al. (2020) examined the fundamental
feature selection methods for software defect
prediction models and their domain applicability.
When analyzing the performance of filter, wrapper,
and embedding feature selection strategies, Support

Vector Machines with Recursive Feature
Elimination were used for both Logistic Regression
and Random Forest. The researchers propose
employing embedded feature selection approaches
to correlate a subset of software metrics.

3. MATERIALSANDMETHOD
In order to test the model, we used a feature

selection technique-based method for software

defect prediction on ten publicly accessible defect

datasets. A rudimentary learner was implemented

utilizing more sophisticated methods, such as J48,

while model trees will be utilized to anticipate

problems. The experiment is carried out in Python

with the help of Anaconda Navigator.

1. Data extraction
In the research, the datasets were mined from

different repositories and open-source domains

after critical analysis and applying criteria in
selecting them; their descriptions are shown in

Table 1.

YJPAS Vol 1, Issue 1, Pages 213-220 ISSN: 3043-6184

Abubakar et al., 2025

 212 | PUBLICATION OF YUSUF MAITAMA SULE UNIVERSITY, KANO
 1

Table 1: The studied datasets

Dataset Modules

Count

Metrics Defective

Ratio %

EPV AUCLR AUCRF

Xalan2.6 889 22 45 21 0.79 0.86

Debug

3.4

1,165 18 27 15 0.72 0.83

JDT 1,097 17 24 14 0.81 0.81

Mylyn 1,952 17 17 16 0.78 0.76

Platform

2

6,989 36 18 30 0.82 0.82

Platform

2.1

8,788 36 16 27 0.77 0.72

Platform

3

11,593 36 14 49 0.79 0.85

SWT 3.4 1,485 19 48 38 0.87 0.95

Prop 1 18,471 23 17 137 0.75 0.76

Prop 2 23,014 28 13 122 0.71 0.85

Guyon and Elisseeff (2003) define the three stages of
selecting the optimal feature sets as follows:

i. Classification of input datasets

ii. Calculating feature weight and

iii. The minimal weight feature is removed in order to

gain feature ranking.

2. The experimental steps are shown as follows:

(a) The Input Datasets

Training sample𝑿𝟎 = [𝒙𝟏, 𝒙𝟐………𝒙𝒎]𝑻…… . ⅈ
Category 𝒀 = [𝒚𝟏, 𝒚𝟐 ………𝒚𝒎]𝑻………… ⅈⅈ
Current feature sets 𝑺 = [𝟏,𝟐, 𝟑………𝒏]… ⅈⅈⅈ
List of Sorted Features 𝒓𝟎 = []… ……………ⅈ𝒗

(b) Sorted Features

The iteration process is continuing until all the

features are sorted 𝒔 = [] ………………… . 𝟏

The new training sample is generated by applying

the matrix by retaining the rest of the features 𝑿 =
𝑿𝟎(𝒔)……………………………………… . . 𝟐

Training the classifier 𝜶 = 𝑺𝑽𝑴−
𝒕𝒓𝒂ⅈ𝒏(𝑿,𝒀). . 𝟑
Weight calculation 𝑾 =
∑𝑲𝜶𝒌𝒀𝒌𝑿𝒌………………………………𝟒

Standard for sorting 𝑪ⅈ = (𝑾ⅈ)𝟐………𝟓

Minimum feature weight 𝒇 =
𝒂𝒓𝒈.𝒎ⅈ𝒏(𝒄)…………………………… . 𝟔

The updated feature sorted list 𝒓 =
[𝑺(𝒇)𝒓]……………………………………𝟕

Removing the feature with minimum weight 𝑺 =
𝒔(𝟏: −𝟏, 𝒇𝟏: 𝒍𝒆𝒏𝒈𝒕𝒉(𝒔))…………𝟖

(c) Sorted Feature List Output r.
From each loop, the feature with minimum weight
(𝑊𝑖)2 will be removed.

 Dimensionality Reduction Techniques

a. Principal Component Analysis (PCA)

An approach that is frequently used in the field of

software defect prediction for dimensionality
reduction is principal component analysis, or PCA.

It entails converting the original dataset into a
principle components set of linearly uncorrelated
variables, which helps minimize the dimensionality

of the data while preserving the majority of its
variance.

PCA Implementation

Covariance Matrix Computation: In order to

determine how the variables are connected, we
computed the covariance matrix of the normalized

dataset using Eigenvalue and Eigenvector
Calculations: We determined the covariance

matrix's eigenvalues and eigenvectors. The
direction of the components is shown by the
eigenvectors, while the eigenvalues show how

much variance is explained by each primary
component. Finally, we sort and choose Principal

Components by selecting the top k eigenvectors
that match the biggest eigenvalues and sorting the
eigenvalues in descending order. The primary

components are made up of these eigenvectors.
Dimensionality Reduction was obtained by

transformation where we multiply the original data
matrix by the chosen eigenvectors to transform the
original dataset into the new principal component

space.

b. Confirmatory Factor Analysis (CFA)

Is statistical method used to validate the factor

structure of a collection of observed data. CFA can

assist in verifying the underlying structure of
software metrics or characteristics that are used to

YJPAS Vol 1, Issue 1, Pages 213-220 ISSN: 3043-6184

Abubakar et al., 2025

 213 | PUBLICATION OF YUSUF MAITAMA SULE UNIVERSITY, KANO
 1

predict software faults when used to dimensionality
reduction in software defect prediction.

To estimate the CFA model's parameters, we used
the lavaan package in conjunction with a statistical

software program from R. Determining the factor
loadings, variances, and covariances are steps in the

estimate process. We determine each observation's
factor scores. The original dataset's reduced
dimensions are reflected in these scores. Lastly,

based on factor loadings, we either reduced the
number of observed variables or chose a subset of

the most important components.

c. Recursive Feature Elimination

Using every feature, we train the model on the

training set. Next, using the model's significance
scores such as the coefficients from an SVM or the
feature importance from a random forest, we rank

the features. We remove the least significant
features iteratively. We removed a predetermined

number or percentage of features with the lowest
significance scores in each iteration. We applied
cross-validation on the training set to assess the

model's performance at the end of each iteration.
When the model performance begins to deteriorate

or reaches a plateau, we finally stop the iteration,
signaling that the remaining features are critical for
prediction.

d. Information gain

In machine learning, information gain (IG) is a
widely utilized feature selection technique,

especially when software fault prediction is
involved. By choosing the most informative

features, it aids in reducing the dimensionality of
the dataset, enhancing model performance and
lowering computing complexity.

We use min-max normalization to normalize the
numerical features and mean imputation to handle

the missing values. To extract measures such lines
of code, code churn, and cyclomatic complexity,

the feature extraction technique was used. By
calculating the entropy and conditional entropy for
each characteristic, we can determine the

information gained. We choose the best features
based on their Information Gain ratings. Lastly, we

use SVM and Random Forests to train the model on
a subset of features.

e. Chi-Squared Test

It is a statistical technique that reduces

dimensionality by choosing features that are most

pertinent to the target variables. The Chi-Squared
test is applied for feature selection in the context of
software defect prediction, as explained in this

methodology.

We determined which possible characteristics, or

independent variables, could affect software flaws,
or dependent variables. We define the target

variable, which is usually a binary variable that
shows whether a fault is present or not by
contributing modules that are either (0) non-faulty

or (1) defective. We use the Chi-Squared test to
determine how relevant each characteristic is to the

target variable. We choose features whose p-values
are smaller than a predetermined significance level
(e.g., 0.05), which means that the feature is

important to the target variable and the null
hypothesis can be rejected. Only the chosen

features are kept for additional examination. Lastly,
we construct a smaller dataset with just the
attributes that the Chi-Squared test was able to pass.

4. RESULT AND DISCUSSION

All the five dimensionality reduction techniques

were performed equally, with correlation-based

technique outperforming others. However, the
performance of these strategies may differ based on

the dataset and machine learning model used.
Figure 1 depicts multiple feature selection

strategies used in predicting defective datasets,

along with the corresponding prediction accuracy
for each.

 Figure 1: Feature selection technique-based

SDP

YJPAS Vol 1, Issue 1, Pages 213-220 ISSN: 3043-6184

Abubakar et al., 2025

 214 | PUBLICATION OF YUSUF MAITAMA SULE UNIVERSITY, KANO
 1

Feature selection approaches are utilized in the

software defect prediction domain to improve the
predictive models' performance through the

reduction of dataset dimensionality and the
identification of the most pertinent features. The

following table presents a summary of the

performance of different feature selection methods
using three important metrics: Area Under the

Receiver Operating Characteristic Curve (AUC),
F1 Score, and Accuracy.

Table1: F ST wi th perc e ntage acc urac y

Feature Selection

Technique Accuracy F1 Score AUC

Correlation-based

feature selection 85.20% 0.87 0.92

Recursive feature

elimination 84.80% 0.86 0.91

Principal component

analysis 84.60% 0.85 0.9

Information gain 84.40% 0.84 0.89

Chi-squared test 84.20% 0.83 0.88

Here is a brief explanation of each of the feature

selection techniques:

Correlation-based feature selection: The best

results were obtained via correlation-based feature

selection (CFS) in terms of accuracy (85.20%), F1
score (0.87), and area under the curve (0.92). A

feature subset's value is assessed by CFS based on
each feature's unique predictive capacity as well as

the degree of redundancy between them. The

excellent performance of this method implies that
it efficiently and with minimal redundancy finds

pertinent features that have a strong correlation
with the target variable.

 Accuracy: 85.20%

 F1 Score: 0.87
 AUC: 0.92

Defect prediction models benefit greatly from

CFS's strong discriminative capacity and balance

between precision and recall, as seen by its high F1
Score and AUC.

Recursive feature elimination:
Additionally, doing well was recursive feature

elimination (RFE), with an Accuracy of 84.80%,

F1 Score of 0.86, and AUC of 0.91. Recursive

feature elimination (RFE) builds the model until the
ideal feature count is attained by progressively

eliminating the least significant features. The
iterative nature of the system, which can

occasionally result in poor feature subsets if

improperly calibrated, could be the cause of the
somewhat lower performance when compared to

CFS.

o Accuracy: 84.80%

o AUC: 0.91
o F1: Score: 0.86

Although it would need additional processing
power and careful parameter tuning, RFE's robust

performance shows that it can choose features that

improve model performance.

Principal component analysis

A balanced performance was demonstrated by
Principal Component Analysis (PCA), with

accuracy of 84.60%, F1 score of 0.85, and AUC of

0.90. The original features are converted into a new
collection of uncorrelated components using PCA,

a dimensionality reduction approach, then arranged
according to how much variance they explain.

Although PCA does not choose features directly, it

can enhance model performance by producing a
condensed representation of the data.

o Reliability:84.60%
o F1 Score: 0.85

o AUC: 0.90

PCA's relatively strong performance metrics

demonstrate how well it reduces dimensionality

while preserving the majority of the data's variance,
making it a useful method for working with high-

dimensional datasets.

Information gain:
With an Accuracy of 84.40%, F1 Score of 0.84, and

AUC of 0.89, Information Gain (IG) performed
well. Given a specific feature, IG calculates the

decrease in entropy or uncertainty in the target
variable. It is an easy-to-use and effective way to

rank features according to how relevant they are to
the desired variable.

YJPAS Vol 1, Issue 1, Pages 213-220 ISSN: 3043-6184

Abubakar et al., 2025

 215 | PUBLICATION OF YUSUF MAITAMA SULE UNIVERSITY, KANO
 1

Accuracy: 84.40%

AUC: 0.89
F1 Score: 0.84

Information Gain performed well despite its
simplicity, demonstrating its usefulness in rapidly

finding significant elements that support predictive

performance.

Chi-squared test:

Among the procedures that were assessed, the Chi-

Squared test performed the worst, with an accuracy of

84.20%, an F1 score of 0.83, and an AUC of 0.88. By

choosing features that have a strong correlation with the

target, this statistical test evaluates the independence

between each feature and the target variable.

Accuracy: 84.20%

AUC: 0.88

F1 Score: 0.83

Even if the Chi-Squared test performed a little bit

worse, it is still a useful technique for feature
selection, especially when working with

categorical data.

CONCLUSION

The findings show that the effectiveness of

software defect prediction models can be greatly
impacted by various dimensionality reduction

techniques. The best method was found to be
correlation-based feature selection, which provided

the highest accuracy, F1 score, and AUC. Principal

component analysis and recursive feature removal
both performed well, albeit they could need

additional tweaking and processing power.

Even though they are a little less efficient than

feature-only models, information gain and the Chi-
Squared test nevertheless offer significant

advantages. These results emphasize how crucial it
is to adopt a suitable feature selection method to

improve the precision and effectiveness of software

defect prediction models. Subsequent
investigations may examine hybrid methodologies

that integrate various techniques to enhance feature
selection and model efficacy.

Here are some additional considerations for
choosing a dimensionality reduction technique:

The size of the dataset: If the dataset is large, then

a computationally extensive technique such as
principal component analysis may be necessary.

The number of features: If there are a large number

of features, then a filter-based technique such as
correlation-based feature selection may be more

efficient.
The type of machine learning model: Some feature

selection techniques are more suitable for certain

types of machine learning models than others.
Ultimately, the best way to choose a dimensionality

reduction technique is to experiment with different
techniques and evaluate their performance on a

specific dataset and machine learning model.

Future studies will venture into solving the issues
of automation of the correlation-based selection

approach, as it makes the software defect prediction
models more complex.5.

REFERENCES
Abubakar, S., M., Sufyanu Z., and Garko, A. B.

(2021). Impact of Correlated Software

Metrics on Embedded Feature Selection
Techniques. International Journal of

Information Processing and
Communication (IJIPC) Vol. 11 (2) 118-

134

Abubakar, S., M. and Sufyanu Z. (2020). A
Survey of Feature Selection Techniques for

Software Defect Prediction Model. Federal
University Dutsinma Journal of Science.

Vol. 3, No 4: 258-265.

Akiyama, E. (1971). An Example of Software
System Debugging. In Proceedings of the

International Federation of Information
Processing Societies Congress, 40

(71):353–359.

Alsolai, H., and Roper, M. (2019). A Systematic
Review of Feature Selection Techniques in

Software Quality Prediction. International
Conference on Elecrical and Computing

technologies and Application

(ICECTA)https://ieeexplore.ieee.org/documen

t/8959566
D’Ambros, M., Lanza, M., and Robbes, R.

(2010). An Extensive Comparison of Bug

Prediction Approaches. In Proceedings of
the Working Conference on Mining

Software Repositories 2(10):31–41
Das, S. (2022). Filters, Wrappers and Boosting-

based Hybrid for Feature Selection.

Division of Engineering and Applied
Science Harvard University, Cambridge,

MA 02B8, USA.

YJPAS Vol 1, Issue 1, Pages 213-220 ISSN: 3043-6184

Abubakar et al., 2025

 216 | PUBLICATION OF YUSUF MAITAMA SULE UNIVERSITY, KANO
 1

Balogun, O.A., Basri, S., Capretz, F.L., Mahamad,

S., Abdullahi Abubakar Imam, A.A.,
Almomani, M.A., Adeyemo, V.E.,

Alazzawi, A.K., Bajeh, A.O. and Kumar, G.
(2021). Software Defect Prediction Using

Wrapper Feature Selection Based on

Dynamic Re-Ranking Strategy.
https://www.mdpi.com/2073-8994/13/11/2166

Balogun, O., A., Basri, S., Said Jadid Abdulkadir,

S., J. and Ahmad Sobri Hashim, A., J.

(2019). Performance Analysis of Feature
Selection Methods in Software Defect

Prediction: A SearchMethod Approach.
MDPI https://www.mdpi.com/2076-

3417/9/13/2764.

Cataldo M., Mockus, A., Roberts, J., and Herbsleb,
J.

(2009). Software Dependencies, Work
Dependencies, and Their Impact on

Failures. Transactions on Software

Engineering, 35(6): 864–878
Guyon, I. and Elisseeff, A. (2003). An

introduction to variable and feature
Selection. J. Mach. Learn. Res., 3:1157–

1182, March 2003
Jolliffe, I. T., and Cadima, J. (2016). Principal

component

analysis: a review and recent developments.

Philosophical Transactions of the Royal

Society A: Mathematical, Physical and

Engineering Sciences, 374(2065), 20150202.

Kakkar, M., and Jain, S (2020). Feature Selection in

Software Defect Prediction: A Comparative

Study. 2020 6th International Conference -
Cloud System and Big Data Engineering

(Confluence)
Liu, S., Chen, X., Liu, W., Chen, J., Gu, Q., and

Chen, D. (2021). FECAR: A Feature

Selection Framework for Software Defect
Prediction. 2021 IEEE 38th Annual

International Computers, Software and
Applications Conference.

Malhotra, R., Chawla, S., and Sharma, A. (2023).

Software defect prediction using hybrid
techniques: A systematic literature review.

Soft Computing, 27(12), 8255–8288.
https://doi.org/10.1007/s00500-022-07738-

w

McIntosh, S., Y. Kamei, B. Adams, and A. E.
Hassan. (2014). The Impact of Code

Review Coverage and Code Review

Participation on Software Quality. In

Proceedings of the Working Conference on
Mining Software Repositories (MSR), 192–

201

Menzies, T. (2018). the Unreasonable

Effectiveness of Software Analytics. IEEE

Software, 35(2): 96–98.

Shanthakumari, R., & Prasad, K. (2014). Software

defect prediction using principal component

analysis and artificial neural network. Journal

of Computer Science, 10(1), 38-43.

Shepperd, M., Song, Q., Sun, Z., and Mair, C.

(2013). Data Quality: Some Comments on
the NASA Software Defect Datasets.

Transactions on Software Engineering
(TSE), 39(9):1208–1215.

Tantithamthavorn, C., and Hassan, A.E. (2018).

an Experience Report on Defect Modelling
in Practice: Pitfalls and Challenges.

IEEE/ACM 40th International Conference
on Software Engineering in Practice Track

(ICSE-SEIP)

Thirumoorthy, K., and Britto J. (2022). A feature
selection model for software defect

prediction using binary Rao
optimization.algorithm.
https://www.sciencedirect.com/science/article/

abs/pii/S1568494622007864
Zhang, X., Xia, X., Lo, D., and Li, S. (2020).

 Revisiting feature selection and

classification for bug prediction in cross-project

context. Empirical Software Engineering, 25,

1753-1792.

Zhou, Y., & Leung, H. (2006). Empirical analysis of

object-oriented design metrics for predicting

high and low severity faults. IEEE Transactions

on software engineering, 32(10), 771-789.

