

YUMSUK JOURNAL OF PURE AND APPLIED SCIENCES

ISSN: 3043-6184

GROWTH, YIELD, PHYTOCHEMICAL SCREENING AND NUTRITIONAL PROFILE OF SOME VARIETIES OF PUMPKIN (CUCURBITA SP.) CULTIVATED IN KANO STATE, NIGERIA

¹Ahmad H K., ¹ Galalain A M., ² Zakari S M., ¹ Plant Science and Biotechnology Department, Bayero University, Kano ²Biological Science Department, Kano State College of Education and Preliminary Studies *Corresponding author's e-mail: hkahmad.bot@buk.edu.ng

Abstract

Pumpkin, a prominent member of the cucurbitaceae family, is a key vegetable crop globally, with widespread cultivation across various regions. This study investigates the growth, yield, phytochemicals and proximate composition of different pumpkin varieties grown in Kano State, Nigeria. Three local varieties ('Rugudu', 'Yar sululu', and 'Fara') were planted during the dry season at Bayero University's research farm to determine their vegetative, reproductive growth and yield. Phytochemical analysis followed the method by Trease and Evans (2009), while proximate composition was assessed using AOAC (2000) standards. Data analysis employed ANOVA, and correlation analysis examined the relationship between growth parameters and yield. Results indicated significant differences (p≤0.05) in growth and yield parameters among the varieties, with a strong positive correlation observed between growth and yield. Phytochemical analysis revealed the presence of flavonoids, saponins, terpenoids, and cardiac glycosides in both pulp and seeds of harvested pumpkin varieties. Proximate composition analysis highlighted notable variations in the nutritional content of both pulp and seeds among the varieties. In conclusion, significant variations were observed in the vegetative, reproductive growth, and yield among the pumpkin varieties studied. The presence of phytochemicals enhances the ethnobotanical significance of the plant, while the substantial nutrient content underscores its nutritional value. Therefore, the cultivation and consumption of pumpkin should be encouraged.

Keywords: Cucurbita spp, Growth, Yield, Phytochemicals, Proximate

INTRODUCTION

One plant group with the most species used as human food is the Cucurbitaceae family. The Cucurbitaceae family consists of about 1,000 species of 100 genera and plants tropical, including mostly perennial, monoecious, and dioecious herbs (Chomicki et al. 2020). Within this family, the genus Cucurbita stands out as one of the important (Sali most et al. 2012). The Cucurbita genus is regarded as a major vegetable crop in many regions of the world (Zhang et al. 2008). The name pumpkin was derived from the Greek word meaning "large melon". It is known various names: for instance, it is known as pumpkin winter squash in English, or "Kabewa" in Hausa, "Anya" in Igbo and "Elegede/Isi", Yoruba respectively; in (Mohammed et al. 2014). Pumpkin is an important of the Cucurbitaceae member

family and is among the 10 leading vegetable fruit crops worldwide (Okoronkwo and Okoli, 2021).

The pumpkin (Cucurbita sp.) has a very high nutritional value, and contains nutrients like carbohydrates, minerals, dietary fibers, other substances as well as an inexpensive source of vitamins (Jahan et al. 2023; Jiang et al. 2023). Worldwide, the leaves are consumed as vegetables, and the pulp is used to produce soups, purees, jams, and pies. regarded Pumpkin seeds are substantial linoleic acid, important fatty acid, and high protein content. The pumpkin seeds contain amazing amounts of vital amino acids and many important trace elements (Aziz et al. 2023). It is an extraordinary vegetable with the potential to be used as medicinal as well as a nutritious (Ndinya multifunctional food 2019). Pumpkin is thought to provide several health advantages due to its range of bioactive components including antidiabetic, anticancer, anti-inflammatory (Sharma et al. 2020) and antioxidants (Bartosz and Anna 2019; Salehi *et al.* 2021). Pumpkin is a powerful anti-aging tool that fights melanoma, cataracts, and other diseases. It

MATERIALSANDMETHODS

Sample collection and Field experiment

Three local seed varieties of Curcubita species were purchased from Dangora local market in Kiru Local Government area, Kano State. The field study was conducted at the University research farm, Faculty of Agriculture, Bayero University, Kano during 2019 dry (11.9728°N, 8.4259°E). A designated area measuring approximately 459 square meters (27 meters by 17 meters) was chosen and demarcated. Ridges were formed, and three plots, each measuring 6 meters by 7 meters, were marked using pegs and replicated three times. Each replicate was separated by a meter. In total, nine plots were established, representing three varieties ('Rugudu', 'Yar sululu' and 'Fara') organized in a complete randomized block design (CRBD). Before planting, 35 kilograms of cow dung was integrated into the plots.

Watering was done using 100% irrigation or full irrigation method with an interval of 7-days

also has a large amount of carotene in it. Pumpkin is low in fat and salt, and devoid of cholesterol (Aziz et al. 2023). But despite these strengths, it has been well established pumpkin has been neglected institutional improvement research and programs in Africa (PROTA 2018; Ezin et al. 2022). Pumpkins (Cucurbita sp.) are one of the most overlooked and underutilized food and medicinal plants (Nyabera et al. 2021). According to Aruah et al. (2011), In Nigeria, the populace are unaware of the high nutritional values of Cucurbita rather it is regarded as traditional food mainly for low income earners, thus has not benefited from the same level of research attention given to other vegetables crops like cucumber, watermelon and fluted pumpkin.

In spite of the popularity of *Cucurbita* species in the culinary culture of Northern Nigeria, very little is known and published on nutrients composition of the pulp and the potential value of other parts of these plant species. This study was carried out to determine the vegetative and reproductive growth, yield, phytochemicals and proximate composition of some varieties of pumpkin (*Cucurbita* sp.) cultivated in Kano State, Nigeria.

throughout the study period as recommended by Yavuz *et al.* (2015). Compound fertilizer (N.P.K. 15-15-15) at the rate of 252g per plot (2.3 kg per 459 m²) was applied by three weeks after sowing and 1.5 kg per 459 m² of Urea 46% N was also applied by six weeks after sowing respectively (Oluoch, 2012). Weeding to eliminate unwanted plants was conducted at specific intervals, namely the 3rd, 6th, and 8th weeks after sowing. Following the guidance of agricultural experts, a narrow blade hand hoe was employed for the weeding process.

Cypermethrin (cymbush) was applied to prevent insect pests during flowering, fruit initiation and fruit formation stages at the rate of 91.8ml per 459m². Spraying starts from 5WAS (weeks after sowing) and stopped at 9WAS. Benomyl (benlate) was applied at the rate of 68.9 g per 459m² due to the presence of disease symptoms. Spraying was done at 6th and 8th weeks after sowing. Data were collected on number of leaves, chlorophyll contents, total leaf area, days to first

flower (DFF), 50% flowering, number of fruits per plant, fruit length, fruit circumference and fresh fruit weight.

Sample preparation

The harvested pumpkins were taken to the laboratory for further analysis. The pulp and seed of each variety was carefully washed with water and dried in the laboratory. The dried samples were made into powder with pestle and mortar and stored in air tight container separately prior to analysis.

Sample Extraction and Phytochemical Analysis

The aqueous extract of (pulp and seed) were prepared using cold maceration method ofNcube al. extraction as described by et(2008). Alkaloids, Tannins, Saponins, Flavonoids, glycoside Anthraquinones, Cardiac and Triterpenes were determined using the method described by Trease and Evans (2009).

Proximate Analysis

The ash contents, moisture content, protein, crude fat, crude fibre and carbohydrate of the samples (pulp and seed) were determined using the method described by the Association of Official Analytical Chemist (AOAC, 2000).

Data Analysis

Data obtained were subjected to analysis of variance (ANOVA). Means were separated using Fisher's LSD (Least Significant Difference) at 5% level of probability.

RESULTS AND DISCUSSION

Vegetative growth parameters of selected local Pumpkin varieties

Results obtained number of leaves, chlorophyll leaf content and area for pumpkin varieties were presented Table 1. Significant difference was observed among the varieties on measurements taken on number of leaves throughout the sampling periods. 'Yar sululu' had statistically highest number while 'Rugudu' had the least number of leaves. It was observed that at 2WAP 'Rugudu' and 'Yar sululu' had statistically $(4.67^{a} \text{ and } 5.00^{a})$ similar number 8WAP 'Fara' pumpkin had the least number of leaves (115.00°). Chlorophyll content was also observed to be significant in 'Rugudu' variety throughout the period. Lowest content

'Fara variety. was recorded in although statistically similar was recorded amount with 'Yar sululu' at 4WAP (54.33b and 51.80b). Area of leaves (mm²) measured in pumpkin varieties was also significant during the experiment. Leaves with smaller area were observed in 'Fara' variety throughout the weeks of observation. 'Rugudu' however, observed to have broader leaves throughout the study period. It can be observed that the three varieties showed differences terms of the vegetative parameters investigated. The three varieties showed better growth performance in terms of response to vegetative growth parameters. The variation in leaf number among the pumpkin varieties observed in this study is consistent with previous research by Okonwu et al. (2018), who noted that increasing leaf numbers are expected as plants grow. works of Rubatzky and Yamaguchi (1997) on differences in growth habits. physical features (like size of their leaves, tendrils, vines, fruits) of members of Cucurbitaceae plant family confirm that the differences observed this study is common members of the family.

Differences in chlorophyll levels observed in this research are corroborated by previous studies. Li et al. (2018b) suggested that chlorophyll, a crucial photosynthetic pigment significantly impacted plants, is findings environmental factors. Their elucidate that plants adapt their to surroundings by modulating chlorophyll levels. Additionally, Sheikh et al. (2017)observed that changes in chlorophyll levels vary according to seasonal fluctuations and environmental influences.

Reproductive growth parameters of selected local Pumpkin varieties

Mean number of days to first flowering, 50% flowering. number of fruits and parameters as presented in Tables 2 'Rugudu' variety statistically took higher number of days to first flower (53.33a) and reach 50% flowering (64.67^{a}) while days to first flowering 50% (45.33°) and reaching

'Fara' flowering (59.33^c) in variety was within fewer days. Highest number of fruits per hectare (784.11a) was observed in 'Yar sululu' (Table 3) but fruit with the highest weight (6.33kg),length (43.28cm) circumference (68.04cm) was observed in 'Rugudu'. Lower values of the reproductive parameters measured were generally recorded in 'Fara' variety. The observations regarding the timing of first flowering and reaching 50% flowering primarily arise from differences in varieties among the evaluated varieties, indicating a Cucurbita range of Kano pumpkins. Ezin et al. (2022) and Gbemenou et al. (2022) suggested that the variations observed in the time taken to reach 50% flowering in Cucurbita varieties could be attributed mainly to within-species differences. Ezin et al. (2022), documented that the time to reach 50% flowering varied from 41.21 to 68.72 days in Cucurbita sp. Similarly. **PROTA** (2018)stated that flowering typically initiates 35 to 60 days emergence and is more less continues.

The variations observed in the number of fruits per plant and fruit weight among different varieties align with findings from previous studies (Aruah et al. 2010; Rahman et al. 2016), which indicated that these differences were primarily influenced by the variety. According to PROTA (2018), the average fruit weight is determined by the specific varieties or cultivars and typically ranges from 1 to 10 kg.

The diversity observed in fruit length and circumference can be attributed to genetic variations among the varieties, as noted by Nee (1990) and Abdullah *et al.* (2003), who documented that *Cucurbita* varieties produce fruits of different sizes based on their genetic makeup.

Correlation analysis between some Growth Parameters and Yield of Pumpkin varieties

The matrix of correlation coefficient (r) between growth parameters taken and yield of pumpkin varieties is presented in Table 4. From the analysis, number of leaves was

observed to be highly significantly correlated with the fruit yield at (P≤0.01). Chlorophyll, leaf area and days to 50% flowering were observed to show positive correlation with the yield at $(P \le 0.05)$. Days to first flowering was only significantly correlated with fruit yield at (P≤0.10). The results have indicated highly significant positive correlation between 50% flowering and numbers leaves, 50% flowering and days to first days flowering flowering, to first numbers of leaves as well as, leaf area and chlorophyll. addition. In correlation (P\le 0.05) was observed between chlorophyll content, days to first flowering and 50% flowering. Similar trend was also observed between leaf area and days to first flowering as well as 50% flowering. However, chlorophyll content and leaf area were only positively correlated with number of leaves at $(P \le 0.10)$. The highly significant correlation between number of leaves and fruit yield suggests that a greater number of leaves on the pumpkin plants are associated yield. higher fruit This finding is consistent with studies that emphasize the role of leaf area and photosynthesis in (Goudriaan determining fruit yield Monteith. 1990). Positive correlation between chlorophyll and fruit yield indicates that higher chlorophyll content is linked with production. Chlorophyll increased fruit photosynthesis, influencing essential for plant growth and yield (Murchie and Lawson 2013). Larger leaf area correlates positively with fruit yield. This relationship emphasizes importance of photosynthetic capacity (Ainsworth and nutrient assimilation Long, 2005). Days to 50% flowering and yield are correlated, suggesting that flowering may influence crop productivity and improve yields. The correlation between days to first flowering and fruit yield (P \le \text{ 0.10) though less significant, suggests that the timing of the first flowering event may also influence fruit yield, however to a lesser extent compared to days to 50% flowering. significant There is highly positive correlation between the number of leaves and

ISSN: 3043-6184

the timing of flowering. This relationship highlights the role of plant development stages in overall plant productivity (Boyes et al. 2001). Similarly, the timing of the first flowering event correlates positively with the number of leaves, indicating a relationship between vegetative growth and reproductive development (Heuvelink and Dorais 2005). Leaf area and chlorophyll shows a significant positive correlation, reflecting interconnectedness of leaf morphology and productivity (Evans physiology in plant 1996).

Compounds identified in aqueous extract of plant parts of the selected local pumpkin varieties used in the experiments.

Results of the compounds identified in the pulp and seed extract of matured pumpkin varieties were presented in Table 5. The result revealed the presence of flavonoid, saponin, terpenoid and cardiac glycoside in the pulp and seed extracts of the matured pumpkin varieties and thus. alkaloid. anthraquinone and tannin were not detected in extract of those parts. Pumpkin pulp, peel and seeds were observed by Hashash et al. (2017) to be one of the richest sources of phytochemicals. The presence of these phytochemicals in the aqueous extract of the pulp and seed of the matured pumpkin varieties showed that pumpkin possess many important chemical constituents which can be used to explore its medicinal value. The results of the present study coincided with earlier studies (Adnan et al. 2017; Muchirah et al. 2018; Okoronkwo and Okoli 2021) where presence of all the phytochemicals revealed in the current study from parts of Cucurbita varieties was reported.

Proximate composition of pulp and seed of selected pumpkin varieties

The results of analyses for the nutritional compositions of the pulp and seed of matured pumpkin varieties are presented in Tables 6. The results of the experiment have indicated significant variation in the values of ash, moisture, protein, crude fat, crude fiber and carbohydrate in both the pulp and seed of the

varieties. However. significant variation in the values of moisture and crude fiber for the of the selected varieties seed were statistically not recorded. Where the variation observed, ash (6.09%), moisture (10.10%), protein (13.53%) and crude fat (3.64%) contents in the pulp of 'Rugudu' variety was significantly higher than in other varieties but with statistically similar ash content in 'Yar sululu'. Lower contents were however. recorded in 'Fara' pulp except for crude fat. Conversely, 'Fara' variety had statistically more crude fiber (58.94%) and carbohydrate (27.60%) contents in the pulp and the least content of these nutrients was found in the pulp of 'Rugudu' pumpkin.

The seed of 'Fara' pumpkin had been analyzed to contain the highest ash (4.83%), protein (24.40%) and crude fat (8.67%) although 'Yar sululu' contents, had statistically similar (4.88%) ash content with 'Fara'. results also The showed that 'Rugudu' had more carbohydrate (28.81%) and lowest composition of ash protein (18.90%) and crude fat (3.96%) in the seed. Least carbohydrate content (12.69%) among varieties was in the seed of 'Fara' pumpkin. The nutrient information antioxidant properties enhance efforts promote wide use of plants because of their nutritional benefits and medicinal properties (Wasagu et al. 2013). The differences in fruit composition depend on many factors such as the variety, stage of maturity, soil fertility, climate and cultural practices, among others (Enneb et al. 2020). In line with findings of the present study, the values of the ash for the pulp and seed obtained are within the range reported by Mohaammed et al. (2014) and Okoronkwo and Okoli (2021) but lower than values obtained by Aruah et al. (2011) and Adebayo et al. (2013). The percentage ash content shows that the pulp and seed of the pumpkin varieties have appreciable amounts of nutrient.

Moisture content is an index of stability of food. The amount of moisture in a food affects its keeping quality, the nutrients provided, type and rate of microbial spoilage

(Oguche 2012).

The value of the moisture content for the seeds in both seasons were lower when compared to reports of Kim *et al.* (2012), Mohaammed *et al.* (2014), and Okoronkwo and Okoli (2021). The low moisture content of the seeds of the *Cucurbita* varieties implies that the seeds would be suitable for storage without spoilage. The result of the moisture content for the pulp is also comparable to the report of Mohaammed *et al.* (2014) for *Cucurbita maxima* fruit but slightly higher in other varieties.

Aruah et al. (2011) and Mohaammed et al. (2014) both reported protein pulp content that favourably compares with the results obtained in this study but slightly higher in some varieties. The percentage protein content of the seeds of the varieties upheld earlier results of the study conducted by Okoronkwo and Okoli (2021) but it was lower when compared to what was reported by Elinge et al. (2012) and Kim et al. (2012).

The fat content recorded from the pulp of all varieties was similar to what was reported by

Aruah et al. (2011). However, Adebayo et al. (2013) have described pumpkins fruits to be characterized by low fat content (2.3%). The moderate fat recorded in the pumpkin pulps has been supported in earlier studies which revealed that leafy vegetables have low lipid (Aruah 2011). Crude fat content of the seeds was lower when compared to reports from literature.

According to Agostoni et al. (1995), nonstarchy vegetables are the richest sources of dietary fiber. The fiber contents for varieties in both parts studied were higher when compared to what was reported in the literature. This implies that pumpkin is a good source of fiber and it has been reported that a low fiber diet has been associated with preventing heart diseases, cancer of the colon and rectum, varicose veins, phlebitis, obesity, appendicitis, diabetes and constipation (Lajide etal. 2008). The amount carbohydrate in both pulp and seed indicates that pumpkin is a carbohydrate rich food which can serve as an energy source.

Table 1: Vegetative growth parameters of selected local numbrin varieties

Table 1: Vegetative growth parameters of selected local pumpkin varieties						
Parameter	Varieties	2WAP	4WAP	6WAP	8WAP	10WAP
Number of	'Rugudu'	4.67a	12.67 ^c	48.33 ^c	126.00 ^b	182.00 ^c
Leaves	'Yar	5.00^{a}	24.00^{a}	90.67^{a}	264.33a	338.00^{a}
	sululu'					
	'Fara'	4.00^{b}	16.67 ^b	56.67 ^b	115.00 ^c	203.67 ^b
	LSD (5%)	0.51	2.12	6.55	17.16	14.34
Chlorophyll Content	'Rugudu'	52.93a	64.87^{a}	65.50^{a}	77.07^{a}	64.00^{a}
(SPAD)	'Yar	45.27^{b}	54.33 ^b	63.37 ^b	67.53 ^b	59.33 ^b
	sululu'					
	'Fara'	37.47 ^c	51.80^{b}	59.70^{c}	64.33 ^c	57.33 ^c
	LSD (5%)	4.89	2.82	0.73	0.71	0.73
Leaf area	'Rugudu'	220.98a	456.93a	564.83a	939.99a	1015.38a
(mm^2)	'Yar	199.49 ^b	415.66 ^b	493.16 ^b	643.54 ^b	678.62^{b}
	sululu'					
	'Fara'	150.11 ^c	374.85 ^c	415.42 ^c	455.24c	511.08 ^c
	LSD (5%)	10.55	37.11	17.09	36.19	40.83

Means followed by different superscript along column for a parameter are significantly different ($p \le 0.05$) using Fisher's LSD (Least Significant Difference), WAP= weeks after planting

Table 2: Mean number of days to first flowering and 50% flowering of selected local pumpkin varieties

	Days of Observation	
Varieties	First Flowering	50% Flowering
'Rugudu'	53.33 ^a	64.67 ^a
'Yar sululu'	50.67 ^b	63.67 ^b
'Fara'	45.33°	59.33°
LSD (5%)	1.54	0.89

Means followed by different superscript along column are significantly different (p≤0.05) using Fisher's LSD (Least Significant Difference)

Table 3: Mean number of fruits and fruit parameters of selected local pumpkin varieties

				<u> </u>
Varieties	No. of Fruit(s) per	Weight of	Fruit Length	Circumference
	Hectare	Fruit (kg)	(cm)	(cm) per Fruit
'Rugudu'	587.99 ^b	6.33a	43.28a	68.04a
'Yar sululu'	784.11 ^a	5.37 ^b	40.65^{b}	60.90^{b}
'Fara'	392.22 ^c	2.77^{c}	29.25^{c}	52.79°
LSD (5%)	0.73	0.18	0.89	0.69

Means followed by different superscript along column are significantly different ($p \le 0.05$) using Fisher's LSD (Least Significant Difference)

Table 4: Matrix of correlation coefficient (r) of relation between some growth parameters and vield of local numbrin varieties under dry season (2019)

yield of focal pumpkin varieties under dry scason (2017)						
	NL	СН	LA	Dff	50%	FY
NL	1.00					
CH	*0.31	1.00				
LA	*0.34	***0.83	1.00			
Dff	***0.76	**0.54	**0.54	1.00		
50%	***0.79	**0.56	**0.54	***0.96	1.00	
FY	***0.80	**0.63	**0.69	*0.33	**0.53	1.00

 \overline{NL} = Number of Leaves, CH = Chlorophyll contents (SPAD), LA = Leaf Area (mm²), Dff = Days to First Flowering, 50% = Days to 50% Flowering, FY = Fruit Yield (per hectare), *= Significant at P\leq 0.10, ** Significant at P\leq 0.05, ***Significant at P\leq 0.01.

Table 5: Compounds identified in aqueous extract of plant parts of the selected local pumpkin varieties used in the experiments

Pumpkin Parts	Compounds	Local varieties				
	-	'Rugudu'	'Yar sululu'	'Fara'		
	Alkaloid	-	-	-		
	Anthraquinone	-	-	-		
	Flavonoids	+	+	+		
Dulm avetno at	Saponin	+	+	+		
Pulp extract	Tannins	-	-	-		
	Terpenoids	+	+	+		
	Cardiac	+	+	+		
	Glycoside					
	Alkaloid	-	-	-		
Seed extract	Anthraquinone	-	-	-		
	Flavonoids	+	+	+		
	Saponin	+	+	+		
	Tannins	-	-	-		
	Terpenoids	+	+	+		
	Cardiac	+	+	+		
	Glycoside					

Key: (+) = Detected (-) = Not detected

Table 6: Mean Values of Proximate composition of pulp and seed of selected local pumpkin varieties

Composition (%)							
Varieties	Ash	Moisture	Protein	Crude Fat	Crude Fibre	Carbohydrate	
	Pulps						
'Rugudu'	6.09^{a}	10.10^{a}	13.53a	3.64^{a}	50.39°	16.25°	
'Yar sululu'	5.54^{a}	6.43^{b}	7.93^{b}	1.15^{c}	55.69 ^b	23.26^{b}	
'Fara'	0.10^{b}	6.07^{b}	4.67°	2.62^{b}	58.94 ^a	27.60a	
LSD (5%)	1.05	1.99	0.98	0.33	0.97	2.31	
			Se	eds			
'Rugudu'	3.33^{b}	2.86	18.90 ^c	3.96°	42.14	28.81a	
'Yar sululu'	4.88^{a}	2.88	22.17^{b}	6.13 ^b	42.75	21.19 ^b	
'Fara'	4.83^{a}	2.82	24.40^{a}	8.67a	46.59	12.69°	
LSD (5%)	1.01	NS	2.10	0.94	NS	4.37	

Means followed by different superscript along column for a pumpkin part are significantly different ($p \le 0.05$) using Fisher's LSD (Least Significant Difference).

CONCLUSION

The pumpkin (*Cucurbita* sp.) varieties grown in Kano State were observed to differ significantly in terms of vegetative and reproductive growth as well

as yield. Flavonoids, saponins, terpenoids, and cardiac glycosides were present in the pulp and seeds using aqueous extraction. Thus, this adds value to the ethnobotanical property of the plant. In

addition, considerable amount of nutrients in the pulp and seeds contained in significant quantities confirmed the nutritional quality of this plant species.

REFERENCES

- Abdullah, A.A., Hegazi, H.H. and Almousa, I.A. (2003). Evaluation of Locally grown Pumpkin Genotypes in the Central Region of Saudi Arabia. J. King Saud Univ. *Agric. Sc.*, *15*(1): 13-24
 - Adebayo, O. R., Farombi, A. G. and Oyekanmi, A.M. (2013). Proximate, Mineral and Anti-Nutrient Evaluation of Pumpkin Pulp (*Cucurbita pepo*) IOSR *Journal of Applied Chemistry*, 4(5):25-28.
 - Adnan, M., Gul, S., Batool, S., Fatima, B., Rehman, A. and Yaqoob, A et al., (2017). A review on the ethnobotany, phytochemistry, pharmacology and nutritional composition of *Cucurbita pepo L. J Phytopharmacol*, 6(2):133-139.
 - Agostoni, C., Riva, R. and Glovannini, M. (1995). Dietary Fiber in weaning Foods of young children. *Pediatrics96*:1000-1005.
 - Ainsworth, E. A. and Long, S. P. (2005). What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. *New Phytologist*, 165(2), 351-372.
 - AOAC. (2000). Official methods of analysis (17thed.). Association of Official Analytical Chemists. Washington D.C. Pp.106.
 - Aruah, C. B., Uguru, M. I. and Oyiga, B. C. (2010). Variations among some Nigerian *Cucurbita* landraces. *African Journal of Plant Science*, 4(10):374-386.
 - Aruah, C.B., Uguru, M.I. and Oyiga, B.C. (2011). Nutritional Evaluation of Some Nigerian Pumpkins (*Cucurbita* spp.). *Fruit, Vegetable and Cereal Science and Biotechnology*, 5(2):64-71.
 - Aziz, A., Noreen, S., Khalid, W., Ejaz, A., Faiz ul Rasool, I., Maham. and Uddin, J.

- (2023). Pumpkin and Pumpkin Byproducts: Phytochemical Constitutes, Food Application and Health Benefits. *ACS omega*, 8(26), 23346-23357.
- Bartosz, K. and Anna, G. (2019). The Profile of Secondary Metabolites and Other Bioactive Compounds in *Cucurbita pepo* L. and *Cucurbita moschata* Pumpkin Cultivars. *Molecules*, 24, 2945.
- Boyes, D. C., Zayed, A. M., Ascenzi, R., McCaskill, A. J., Hoffman, N. E., Davis, K. R. and Görlach, J. (2001). Growth stage—based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. *The Plant Cell*, *13*(7), 1499-1510.
- Chomicki, G., Schaefer, H. and Renner, S. S. (2020). Origin and domestication of Cucurbitaceae crops: Insights from phylogenies, genomics and archaeology. *New Phytologist*, 226(5): 1240–1255.
- Elinge, C. M., Muhammad, A.1., Atiku, F. A.1., Itodo, A. U.1., Peni, I. J., Sanni, O. M.1. and Mbongo, A. N. (2012). Proximate, Mineral and Anti-nutrient Composition of Pumpkin (*Cucurbita pepo* L) Seeds Extract. *International Journal of Plant Research*, 2(5): 146-150.
- Enneb, S., Drine, S., Bagues, M., Triki, T., Boussora, F., Guasmi, F.and Ferchichi, A. (2020). Phytochemical profiles and nutritional composition of squash (*Cucurbita moschata*) from Tunisia. *South African Journal of Botany*, 130, 165-171.
- Evans, J. R. (1996). Developmental constraints on photosynthesis: Effects of light and nutrition. *Canadian Journal of Botany*, 74(4), 532-537.
- Ezin, V., Gbemenou, U.H. and Ahanchede, A. (2022). Characterization of cultivated pumpkin (*Cucurbita moschata* Duchesne) landraces for genotypic variance, heritability and

- agro-morphological traits. *SaudiJournal* of *Biological Sciences*29:3661–3674.
- Gbemenou, U.H., Ezin, V. and Ahanchede, A. (2022). Current state of knowledge on the potential and production of *Cucurbita moschata* (pumpkin) in Africa: A review. *African Journal of Plant Science*, 16(1), pp. 8-21.
- Goudriaan, J. and Monteith, J. L. (1990). A mathematical function for crop growth based on light interception and leaf area expansion. *Annals of Botany*, 66(6), 695-701.
- Hashash, M.M., Mortada, M.S, Afaf, A. A., Heba, A. and Eman, A. M. (2017) Nutritional Potential, Mineral Composition and Antioxidant Activity Squash (*Cucurbita Pepo* L.) Fruits Grown in Egypt. European Journal of Biomedical and Pharmaceutical sciences4(3):05-12.
- Heuvelink, E., and Dorais, M. (2005). Crop growth and yield. In Plant production in closed ecosystems (pp. 61-98). Springer, Dordrecht.
- Jahan, F., Islam, M. B., Moulick, S. P., Al Bashera, M., Hasan, M. S., Tasnim, N. and Bhuiyan, M. N. H. (2023). Nutritional characterization and antioxidant properties of various edible portions of *Cucurbita maxima*: A potential source of nutraceuticals. *Heliyon*.
- Jiang, W., Zhang, Y., Zeng, J., Yao, J., Lu, A., Fang, Z. and Zhang, Y. (2023). Composition analysis of acidhydrolysates from *Cucurbita moschata* Duch. polysaccharides and their effect on oxidative stress resistance of Caenorhabditis elegans. *Food Science and Human Wellness*, 12(3): 795-800.
- Kim, M. Y., Kim, E. J., Kim, Y.N., Choi, C. and Lee, B.H. (2012). Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. *Nutrition Research and Practice*, 6(1):21–27.

- Lajide, L., Oseke, M.O. and Olaoye, O.O. (2008). Vitamin C, fibre, lignin and mineral contents of some edible legumes seedlings. *Journal of food technology*6(6):237-241.
- Li, Y., He, N., Hou, J., Xu, L., Liu, C. andZhang, J.(2018b). Factors influencing leaf chlorophyll content in natural forests at the biome scale. *Front. Ecol. Evol.* 6: 64.
- Mohammed, S. S., Paiko, Y. B., Mann, A., Ndamitso, M. M., Mathew, J. T. and Maaji, S. (2014). Proximate, Mineral and Anti-nutritional Composition of *Cucurbita maxima* fruits Parts. *Nigerian Journal of Chemical Research*, 19:37-49.
- Muchirah, P.N., Waihenya, R., Muya, S., Abubakar, L., Ozwara, H. and Makokha, A. (2018). Characterization and anti-oxidant activity of *Cucurbita maxima* Duchesne pulp and seed extracts. *J Phytopharmacol.*, 7(2):134-140
- Murchie, E. H. and Lawson, T. (2013). Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. *Journal of Experimental Botany*, 64(13), 3983-3998.
- Ncube, N. S., Afolayan, A. J. and Okoh, A. I. (2008). Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. *African Journal of Biotechnology*, 7(12): 1797-1806.
- Ndinya, C.A. (2019). The genetic diversity of popular African leafy vegetables in western Kenya. In Genetic Diversity in Horticultural Plants; Springer: Berlin/Heidelberg, Germany,pp. 127–159.
- Nee, M. (1990). The domestication of *Cucurbita* (Cucurbitaceae), *Econ.Bot.*, 44(3, Suppl): 56-68.
- Nyabera, L.A., Nzuki, I.W., Runo, S.M. and Amwayi, P.W. (2021). Assessment of genetic diversity of pumpkins

- (*Cucurbita* spp.) from western Kenya using SSR molecular markers. *Mol. Biol. Rep.* 48:2253–2260.
- Oguche, G. H.E. (2012). The effect of sun and shade drying on chemical composition of *Vitex doniana*, *Ipomoea aquatica* and *Cohcorus* and their soups. *International Journal Nutrition Metabolism*, 4(9): 121-129
- Okonwu, K., Onyejanochie, M. I. and Ugiomoh, I. G. (2018). Performance of *Cucurbita moschata* on soil and soilless media. *International Journal of Plant and Soil Science*, 26(4), 1-8.
- Okoronkwo, C. M. and Okoli, E. E. (2021). Nutritional Composition of Some Accessions of Pumpkin (Cucurbita Spp) Seeds from Abia State, Nigeria. *The International Journal of Science and Technology*, 9 (1):26-31.
- Oluoch, M. O. (2012). Production practices of pumpkins for improved productivity. *Scripta. Hort*, *15*, 181-189.
- PROTA (2018). *Cucurbita moschata* (PROTA). (R. PlantUse Français, novembre 10, 2020 depuis https://uses.plantnet-project.org/f/index.php? title=*Cucurbita_moschata_*(PROTA)an doldid=273360., ed).
- Rahman, M.H., Alam Patwary, M.M., Barua, H., Nahar, S. and Abu Noman, F.A. (2016). Evaluation of Yield Quality of Three Jack Fruit (*Artocarpus heterophyllus* L.) Genotypes. A Scientific *Journal of Krishi Foundation*, 14(1):107-111.
- Rubatzky, V.R. and Yamaguchi, M. (1997). World Vegetables: Principles, Production, and Nutritive Value. Chapman and Hall, NY.
- Salehi, B., Quispe, C. and Sharifi-Rad, J. (2021). Antioxidant potential of family Cucurbitaceae with special emphasis on *Cucurbita* genus: A key to alleviate oxidative stress-mediated disorders. *Phytotherapy Research*. 1–25.
- Sali, A., Imer, R., Shukri, F., Salih, S. and

- Refki, Z. (2012). Nutritive and Mineral Composition in a Collection of *Cucurbita pepo* L Grown in Kosova. *Food and Nutrition Sciences*, 3, 634-638.
- Sharma, P., Kaur, G., Kehinde, B. A., Chhikara, N., Panghal, A. andKaur, H. (2020). Pharmacological and biomedical uses of extracts of pumpkin and its relatives and applications in the food industry: a review. *International Journal of Vegetable Science*, 26 (1), 79–95
- Sheikh, A.Q., Ashok, K.P. and Bashir, A. G. (2017). Seasonal Variation in Chlorophyll Content of Some Selected Plant Species of Yousmarg Grassland Ecosystem. *Asian J. Plant Sci. Res.*, 7(2):33-36.
- Trease, G. E. and Evans, W. O. (2009). Trease and Evans Pharmacognosy, Sixteenth Edition. New York: Sauders Elsevier Limited. pp. 104 – 262.
- Wasagu, R.S.U., Lawal, M., Shehu, S., Alfa, H.H. and Muhammad, C. (2013). Nutritives values, Mineral and Antioxidant Properties of Pista stratiotes (water lettuce). Nigerian Journal of Basic and Applied Sciences, 21(4):257.
- Yavuz, D., Seymen, M., Yavuz, N. and Türkmen, Ö. (2015). Effects of irrigation interval and quantity on the yield and quality of confectionary pumpkin grown under field conditions, *Agricultural Water Management*, 159:290-298.
- Zhang, Y., Zhou, J., Wu, T. and Cao, J. (2008). Shoot regeneration and the relationship between organogenic capacity and endogenous hormonal contents in pumpkin. *Plant Cell Tissue Organ Cult.*, 93:323-33.